相关习题
 0  239135  239143  239149  239153  239159  239161  239165  239171  239173  239179  239185  239189  239191  239195  239201  239203  239209  239213  239215  239219  239221  239225  239227  239229  239230  239231  239233  239234  239235  239237  239239  239243  239245  239249  239251  239255  239261  239263  239269  239273  239275  239279  239285  239291  239293  239299  239303  239305  239311  239315  239321  239329  266669 

科目: 来源: 题型:解答题

14.在极坐标系中,已知点A(2,$\frac{π}{2}$),点B在直线l:ρcosθ+ρsinθ=0(0≤θ≤2π)上,当线段AB最短时,求点B的极坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左、右顶点分别为A,B,过右焦点F的直线l与椭圆C交于P,Q两点(点P在x轴上方).
(1)若QF=2FP,求直线l的方程;
(2)设直线AP,BQ的斜率分别为k1,k2,是否存在常数λ,使得k1=λk2?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

12.在极坐标系中,圆C的圆心在极轴上,且过极点和点$({3\sqrt{2},\frac{π}{4}})$,求圆C的极坐标方程.

查看答案和解析>>

科目: 来源: 题型:解答题

11.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.若直线l的极坐标方程为$\sqrt{2}ρcos(θ-\frac{π}{4})-2=0$,曲线C的极坐标方程为:ρsin2θ=cosθ,将曲线C上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线C1
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)已知直线l与曲线C1交于A,B两点,点P(2,0),求|PA|+|PB|的值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=|x+2|,x∈R.
(1)解不等式f(2x)≤12-f(x-3);
(2)已知不等式f(2x)≤f(2x-3)+|x+a|的解集为M,且$M∩({\frac{1}{2},1})≠∅$,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.在平面直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),圆C的方程为x2+y2-4x-2y+4=0.以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求l的普通方程与C的极坐标方程;
(2)已知l与C交于P,Q,求|PQ|.

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知实数x,y满足约束条件$\left\{\begin{array}{l}{3x-y+2≥0}\\{x-2y-1≤0}\\{2x+y-2≤0}\end{array}\right.$,则z=x-3y的最大值为2.

查看答案和解析>>

科目: 来源: 题型:填空题

7.面积为4$\sqrt{3}$的等边三角形ABC中,D是AB边上靠近B的三等分点,则$\overrightarrow{CD}$•$\overrightarrow{AB}$=$\frac{8}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

6.名著《算学启蒙》中有如下题:“松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等”.这段话的意思是:“松有五尺长,竹有两尺长,松每天增长前一天长度的一半,竹每天增长前一天长度的两倍.”.为了研究这个问题,以a代表松长,以b代表竹长,设计了如图所示的程序框图,输入的a,b的值分别为5,2,则输出的n的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知函数f(x)=2cos(ωx+$\frac{3}{2}$π)(ω>0)的最小正周期为2π,则函数f(x)图象的一条对称轴方程为(  )
A.x=$\frac{π}{4}$B.x=$\frac{π}{2}$C.x=$\frac{3}{4}$πD.x=π

查看答案和解析>>

同步练习册答案