相关习题
 0  239174  239182  239188  239192  239198  239200  239204  239210  239212  239218  239224  239228  239230  239234  239240  239242  239248  239252  239254  239258  239260  239264  239266  239268  239269  239270  239272  239273  239274  239276  239278  239282  239284  239288  239290  239294  239300  239302  239308  239312  239314  239318  239324  239330  239332  239338  239342  239344  239350  239354  239360  239368  266669 

科目: 来源: 题型:解答题

19.已知平面内两点A(0,-a),B(0,a)(a>0),有一动点P在平面内,且直线PA与直线PB的斜率分别为k1,k2,令k1•k2=m,其中m≠0.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)已知N点在圆x2+y2=a2上,设m∈(-1,0)时对应的曲线为C,设F1,F2是该曲线的两个焦点,试问是否存在点N,使△F1NF2的面积S=$\sqrt{-m}$•a2

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知二次函数f(x)=x2+ax+b+1,关于x的不等式f(x)-(2b-1)x+b2<1的解集为(b,b+1),其中b≠0.
(Ⅰ)求a的值;
(Ⅱ)令g(x)=$\frac{f(x)}{x-1}$,若函数φ(x)=g(x)-kln(x-1)存在极值点,求实数k的取值范围,并求出极值点.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,P-ABD和Q-BCD为两个全等的正棱锥,且A,B,C,D四点共面,其中AB=1,∠APB=90°.
(Ⅰ)求证:BD⊥平面APQ;
(Ⅱ)求直线PB与平面PDQ所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

16.有3所高校欲通过三位一体招收24名学生,要求每所高校至少招收一名且人数各不相同的招收方法有475种.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知m∈R,若点M(x,y)为直线l1:my=-x和l2:mx=y+m-3的交点,l1和l2分别过定点A和B,则|MA|•|MB|的最大值为5.

查看答案和解析>>

科目: 来源: 题型:填空题

14.某中学的十佳校园歌手有6名男同学,4名女同学,其中3名来自1班,其余7名来自其他互不相同的7个班,现从10名同学中随机选择3名参加文艺晚会,则选出的3名同学来自不同班级的概率为$\frac{49}{60}$,设X为选出3名同学中女同学的人数,则该变量X的数学期望为$\frac{6}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知数列{an}满足an+1+(-1)nan=2n-1,若a1=1,则a3=1,前60项的和为1830.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知集合M={x|y=ln$\frac{x-1}{x}$},N={y|y=x2+2x+2},则M=(-∞,0)∪(1,+∞),(∁RM)∩N={1}.

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知F为抛物线4y2=x的焦点,点A,B都是抛物线上的点且位于x轴的两侧,若$\overrightarrow{OA}$•$\overrightarrow{OB}$=15(O为原点),则△ABO和△AFO的面积之和的最小值为(  )
A.$\frac{1}{8}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{65}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

10.如图,已知矩形OABC中,OA=2,OC=1,OD=3,若P在△BCD中(包括边界),且$\overrightarrow{OP}$=α$\overrightarrow{OC}$+$\frac{1}{2}$β$\overrightarrow{OA}$,则α+$\frac{3}{2}$β的最大值为(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{9}{2}$D.3

查看答案和解析>>

同步练习册答案