相关习题
 0  239187  239195  239201  239205  239211  239213  239217  239223  239225  239231  239237  239241  239243  239247  239253  239255  239261  239265  239267  239271  239273  239277  239279  239281  239282  239283  239285  239286  239287  239289  239291  239295  239297  239301  239303  239307  239313  239315  239321  239325  239327  239331  239337  239343  239345  239351  239355  239357  239363  239367  239373  239381  266669 

科目: 来源: 题型:选择题

9.将函数$f(x)=sin({2x+φ})({|φ|<\frac{π}{2}})$的图象向左平移$\frac{π}{3}$个单位长度后,所得函数g(x)的图象关于原点对称,则函数f(x)在$[{0,\frac{π}{2}}]$的最大值为(  )
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知定义在R上的函数f(x)=2|x-m|+1(m∈R)为偶函数.记a=f(log22),b=f(log24),c=f(2m),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知复数(1+i)z=1-i(i是虚数单位),则z的共轭复数的虚部是(  )
A.iB.1C.-iD.-1

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知集合A={x|x2+x-2<0},B={x|y=log2x},则A∩B=(  )
A.(-2,1)B.(-2,0)C.(0,+∞)D.(0,1)

查看答案和解析>>

科目: 来源: 题型:选择题

5.如果x0是函数f(x)的一个零点,且在这个零点两侧函数值异号,则称x0是函数f(x)的一个变号零点,已知函数f(x)=ax2+1+lnx在($\frac{1}{e}$,e)上有且仅有一个变号零点,则实数a的取值范围为(  )
A.[-$\frac{2}{{e}^{2}}$,0)B.[-$\frac{2}{{e}^{2}}$,0)∪{$-\frac{1}{2}$e}C.[-$\frac{e}{2}$,0)D.[-$\frac{2}{{e}^{2}}$,0]

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=|x+1-2a|+|x-a2|,a∈R.
(Ⅰ)若f(a)≤2|1-a|,求实数a的取值范围;
(Ⅱ)若关于x的不等式f(x)≤1存在实数解,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.设函数f(x)=xex-ax(a∈R,a为常数),e为自然对数的底数.
(Ⅰ)当f(x)>0时,求实数x的取值范围;
(Ⅱ)当a=2时,求使得f(x)+k>0成立的最小正整数k.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知圆C:(x-1)2+y2=$\frac{1}{4}$,一动圆与直线x=-$\frac{1}{2}$相切且与圆C外切.
(Ⅰ)求动圆圆心P的轨迹T的方程;
(Ⅱ)若经过定点Q(6,0)的直线l与曲线T相交于A、B两点,M是线段AB的中点,过M作x轴的平行线与曲线T相交于点N,试问是否存在直线l,使得NA⊥NB,若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在S市的A区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.
 x(个) 2 3 4 5 6
 y(百万元) 2.5 3 4 4.5 6
(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程y=$\widehatbx+a$;
(Ⅱ)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为z=y-0.05x2-1.4,请结合(Ⅰ)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?
参考公式:$\widehat{y}$=$\widehat{b}$x+a,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{\;}({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右顶点分别为A1、A2,M是双曲线上异于A1、A2的任意一点,直线MA1和MA2分别与y轴交于P,Q两点,O为坐标原点,若|OP|,|OM|,|OQ|依次成等比数列,则双曲线的离心率的取值范围是(  )
A.$({\sqrt{2},+∞})$B.$[{\sqrt{2},+∞})$C.$({1,\sqrt{2}})$D.$({1,\sqrt{2}}]$

查看答案和解析>>

同步练习册答案