相关习题
 0  239197  239205  239211  239215  239221  239223  239227  239233  239235  239241  239247  239251  239253  239257  239263  239265  239271  239275  239277  239281  239283  239287  239289  239291  239292  239293  239295  239296  239297  239299  239301  239305  239307  239311  239313  239317  239323  239325  239331  239335  239337  239341  239347  239353  239355  239361  239365  239367  239373  239377  239383  239391  266669 

科目: 来源: 题型:选择题

3.某班级有学生50名,班主任为了检查学生的学习状况,用系统抽样方法从中抽取10人,将这50名学生随机编号为1~50号,若36号被抽到了,则下列编号的学生被抽到的是(  )
A.4B.17C.28D.41

查看答案和解析>>

科目: 来源: 题型:选择题

2.函数f(x)=3x2+ex-2(x<0)与g(x)=3x2+ln(x+t)图象上存在关于y轴对称的点,则t的取值范围是(  )
A.(-∞,$\frac{1}{e}$)B.(-∞,e)C.(-e,$\frac{1}{e}$)D.(-$\frac{1}{e}$,e)

查看答案和解析>>

科目: 来源: 题型:选择题

1.下列函数中,哪个函数在其定义域内是单调有界函数(  )
A.f(x)=$\sqrt{x}$B.f(x)=2xC.f(x)=sinxD.f(x)=arctanx

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=|x+2|+|x-2|.
(1)求不等式f(x)≤6的解集A;
(2)若m,n∈A,试证:|${\frac{1}{3}$m-$\frac{1}{2}$n|≤$\frac{5}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=ex
(1)讨论函数g(x)=f(ax)-x-a的单调性;
(2)证明:f(x)+lnx+$\frac{3}{x}>\frac{4}{{\sqrt{x}}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,且过点$({1,\frac{{\sqrt{3}}}{2}})$.
(1)求E的方程;
(2)若直线l:y=kx+m(k>0)与E相交于P,Q两点,且OP与OQ(O为坐标原点)的斜率之和为2,求O到直线l距离的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数 (千册)23458
单册成本 (元)3.22.421.91.7
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:${\stackrel{∧}{y}}^{(1)}$=$\frac{4}{x}+1.1$,方程乙:$\stackrel{{∧}^{(2)}}{y}$=$\frac{6.4}{x^2}+1.6$.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
印刷册数x(千册)23458
单册成本y(元)3.22.421.91.7
模型甲估计值${\stackrel{∧}{{y}_{i}}}^{(1)}$  2.42.1 1.6
残差${\stackrel{∧}{{e}_{i}}}^{(1)}$ 0-0.1 0.1
模型乙估计值 ${\stackrel{∧}{{y}_{i}}}^{(2)}$ 2.321.9 
残差 ${\stackrel{∧}{{e}_{i}}}^{(2)}$ 0.100 
②分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.8)或10千册(概率0.2),若印刷厂以每册5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)

查看答案和解析>>

科目: 来源: 题型:解答题

2.数列{an}满足an+5an+1=36n+18,n∈N*,且a1=4.
(1)写出{an}的前3项,并猜想其通项公式;
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目: 来源: 题型:填空题

1.过双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a,b>0)的右焦点且垂直于x轴的直线与C的渐近线相交于A,B两点,若△AOB(O为原点)为正三角形,则C的离心率是$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知集合A={x∈Z|y=log3(x+5)},B={x∈R|2x<$\frac{1}{2}}$},则A∩B={-4,-3,-2}.

查看答案和解析>>

同步练习册答案