相关习题
 0  239246  239254  239260  239264  239270  239272  239276  239282  239284  239290  239296  239300  239302  239306  239312  239314  239320  239324  239326  239330  239332  239336  239338  239340  239341  239342  239344  239345  239346  239348  239350  239354  239356  239360  239362  239366  239372  239374  239380  239384  239386  239390  239396  239402  239404  239410  239414  239416  239422  239426  239432  239440  266669 

科目: 来源: 题型:选择题

20.已知i是虚数单位,若z(1+i)=1+3i,则$\overline z$=(  )
A.2-iB.2+iC.-1+iD.-1-i

查看答案和解析>>

科目: 来源: 题型:选择题

19.集合A={x|y=lg(x-2)},B={y|y=2x,x≥0},则(∁RA)∩B=(  )
A.(0,2)B.[0,2]C.[1,2]D.(1,2)

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知四棱锥S-ABCD的底面为平行四边形,且SD⊥面ABCD,AB=2AD=2SD,∠DCB=60°,M、N分别为SB、SC中点,过MN作平面MNPQ分别与线段CD、AB相交于点P、Q.
(Ⅰ)在图中作出平面MNPQ使面MNPQ‖面SAD(不要求证明);
( II)若$|{\overrightarrow{AB}}|=4$,在(Ⅰ)的条件下求多面体MNCBPQ的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知△ABC中,AC=4,BC=2$\sqrt{7},∠BAC=\frac{π}{3}$,则AB的长为6.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知向量$\overrightarrow a,\overrightarrow b$的夹角为$\frac{5π}{6},|{\overrightarrow a}|=2,|{\overrightarrow b}|=\sqrt{3}$,则$\overrightarrow a•({2\overrightarrow b-\overrightarrow a})$=-10.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知f(x)=alnx-x2在区间(0,1)内任取两个不相等的实数p、q,不等式$\frac{f(p)-f(q)}{p-q}>1$恒成立,则实数a的取值范围为(  )
A.(3,5)B.(-∞,0)C.(3,5]D.[3,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

14.在直角坐标系中,以原点为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为$ρcos({θ+\frac{π}{4}})=\frac{{\sqrt{2}}}{2}$,曲线C的参数方程为$\left\{\begin{array}{l}{x=5+cosθ}\\{y=sinθ}\end{array}\right.$,(θ为参数).
(Ⅰ)求直线l的直角坐标方程和曲线C的普通方程;
(Ⅱ)曲线C交x轴于A、B两点,且点xA<xB,P为直线l上的动点,求△PAB周长的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=x-alnx,a∈R.
(Ⅰ)研究函数f(x)的单调性;
(Ⅱ)设函数f(x)有两个不同的零点x1、x2,且x1<x2
(1)求a的取值范围;               
(2)求证:x1x2>e2

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,椭圆E的左右顶点分别为A、B,左右焦点分别为F1、F2,|AB|=4,|F1F2|=2$\sqrt{3}$,直线y=kx+m(k>0)交椭圆于C、D两点,与线段F1F2及椭圆短轴分别交于M、N两点(M、N不重合),且|CM|=|DN|.
(Ⅰ)求椭圆E的离心率;
(Ⅱ)若m>0,设直线AD、BC的斜率分别为k1、k2,求$\frac{k_1}{k_2}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知四棱锥S-ABCD的底面为平行四边形,且SD⊥面ABCD,AB=2AD=2SD,∠DCB=60°,M,N分别为SB,SC中点,过MN作平面MNPQ分别与线段CD,AB相交于点P,Q.
(Ⅰ)在图中作出平面MNPQ,使面MNPQ‖面SAD(不要求证明);
(Ⅱ)若$\overrightarrow{AQ}=λ\overrightarrow{AB}$,是否存在实数λ,使二面角M-PQ-B的平面角大小为60°?若存在,求出的λ值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案