相关习题
 0  239252  239260  239266  239270  239276  239278  239282  239288  239290  239296  239302  239306  239308  239312  239318  239320  239326  239330  239332  239336  239338  239342  239344  239346  239347  239348  239350  239351  239352  239354  239356  239360  239362  239366  239368  239372  239378  239380  239386  239390  239392  239396  239402  239408  239410  239416  239420  239422  239428  239432  239438  239446  266669 

科目: 来源: 题型:选择题

18.已知集合A={x|(x-3)(x+1)≤0},B={x|-2<x≤2},则A∩B=(  )
A.[-2,-1]B.[-1,2]C.[-1,1]D.[1,2]

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数f(x)=x2+$\frac{2}{x}$+alnx(x>0,a为常数).
(1)讨论函数g(x)=f(x)-x2的单调性;
(2)对任意两个不相等的正数x1、x2,求证:当a≤0时,$\frac{{f({x_1})+f({x_2})}}{2}>f({\frac{{{x_1}+{x_2}}}{2}})$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,已知椭圆C1的中心在原点O,长轴左、右端点M、N在x轴上,椭圆C2的短轴为MN,且C1、C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点纵坐标从大到小依次为A、B、C、D.
(1)设$e=\frac{1}{2}$,求|BC|与|AD|的比值;
(2)若存在直线l,使得BO∥AN,求椭圆离心率e的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.四棱锥P-ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点.
(1)求证:QP⊥AC;
(2)当二面角Q-AC-P的大小为120°时,求QB的长;
(3)在(2)的条件下,求三棱锥Q-ACP的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

14.设有两个命题,p:关于x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2-x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是$0<a≤\frac{1}{2}$或a≥1.

查看答案和解析>>

科目: 来源: 题型:选择题

13.一光源P在桌面A的正上方,半径为2的球与桌面相切,且PA与球相切,小球在光源P的中心投影下在桌面产生的投影为一椭圆,如图所示,形成一个空间几何体,且正视图是Rt△PAB,其中PA=6,则该椭圆的短轴长为(  )
A.6B.8C.$4\sqrt{3}$D.3

查看答案和解析>>

科目: 来源: 题型:选择题

12.如图,半径为5cm的圆形纸板内有一个相同圆心的半径为1cm的小圆,现将半径为1cm的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为(  )
A.$\frac{1}{2}$B.$\frac{21}{25}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.$\int{\begin{array}{l}{\frac{π}{4}}\\ 0\end{array}}({sinx-acosx})dx=-\frac{{\sqrt{2}}}{2}$,则实数a等于(  )
A.1B.$\sqrt{2}$C.-1D.$-\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图所示,四棱锥A-BCDE,已知平面BCDE⊥平面ABC,BE⊥EC,DE∥BC,BC=2DE=6,AB=4$\sqrt{3}$,∠ABC=30°.
(1)求证:AC⊥BE;
(2)若∠BCE=45°,求三棱锥A-CDE的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

9.生产甲乙两种精密电子产品,用以下两种方案分别生产出甲乙产品共3件,现对这两种方案生产的产品分别随机调查了100次,得到如下统计表:
①生产2件甲产品和1件乙产品
正次品甲正品
甲正品
乙正品
甲正品
甲正品
乙次品
甲正品
甲次品
乙正品
甲正品
甲次品
乙次品
甲次品
甲次品
乙正品
甲次品
甲次品
乙次品
频  数15201631108
②生产1件甲产品和2件乙产品
正次品乙正品
乙正品
甲正品
乙正品
乙正品
甲次品
乙正品
乙次品
甲正品
乙正品
乙次品
甲次品
乙次品
乙次品
甲正品
乙次品
乙次品
甲次品
频  数81020222020
已知生产电子产品甲1件,若为正品可盈利20元,若为次品则亏损5元;生产电子产品乙1件,若为正品可盈利30元,若为次品则亏损15元.
(1)按方案①生产2件甲产品和1件乙产品,求这3件产品平均利润的估计值;
(2)从方案①②中选其一,生产甲乙产品共3件,欲使3件产品所得总利润大于30元的机会多,应选用哪个?

查看答案和解析>>

同步练习册答案