相关习题
 0  239256  239264  239270  239274  239280  239282  239286  239292  239294  239300  239306  239310  239312  239316  239322  239324  239330  239334  239336  239340  239342  239346  239348  239350  239351  239352  239354  239355  239356  239358  239360  239364  239366  239370  239372  239376  239382  239384  239390  239394  239396  239400  239406  239412  239414  239420  239424  239426  239432  239436  239442  239450  266669 

科目: 来源: 题型:填空题

18.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$一条渐近线与x轴的夹角为30°,那么双曲线的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知f(x)=(x-4)3+x-1,{an}是公差不为0的等差数列,f(a1)+f(a2)+…+f(a9)=27,则f(a5)的值为(  )
A.0B.1C.3D.5

查看答案和解析>>

科目: 来源: 题型:选择题

16.设点M(x,y)满足不等式组$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$,点P(-4a,a)(a>0),则当$\overrightarrow{OP}•\overrightarrow{OM}$最大时,点M为(  )
A.(0,2)B.(0,0)C.(4,6)D.(2,6)

查看答案和解析>>

科目: 来源: 题型:选择题

15.现有4人参加抽奖活动,每人依次从装有4张奖票(其中2张为中奖票)的箱子中不放回地随机抽取一张,直到2张中奖票都被抽出时活动结束,则活动恰好在第3人抽完后结束的概率为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知x>0,y>0,$\frac{2}{x}+\frac{1}{y}=\frac{1}{3}$,x+2y>m2-2m恒成立,则m的取值范围是(  )
A.[-6,4]B.[-4,6]C.(-4,6)D.(-6,4)

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知复数z=|1-i|i2017(其中i为虚数单位),则$\overline z$的虚部为(  )
A.-1B.-iC.$\sqrt{2}i$D.$-\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知全集U=R,集合A={x|x2-2x-8>0},B={1,5},则集合(∁UA)∩B为(  )
A.{x|1<x<5}B.{x|x>5}C.{1}D.{1,5}

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,过左焦点F且垂直于x轴的弦长为1.
( I)求椭圆C的标准方程;
(Ⅱ)点P(m,0)为椭圆C的长轴上的一个动点,过点P且斜率为$\frac{1}{2}$的直线l交椭圆C于A,B两点,问:|PA|2+|PB|2是否为定值?若是,求出这个定值并证明,否则,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,底面ABCD是梯形,AB∥CD,PD⊥平面ABCD,BD⊥DC,PD=BD=DC=$\frac{1}{2}$AB,E为PC中点.
( I)证明:平面BDE⊥平面PBC;
( II)若VP-ABCD=$\sqrt{2}$,求点A到平面PBC的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

9.某网络营销部门为了统计某市网友2016年12月12日的网购情况,从该市当天参与网购的顾客中随机抽查了男女各30人,统计其网购金额,得到如下频率分布直方图:
网购达人非网购达人合计
男性30
女性1230
合计60
若网购金额超过2千元的顾客称为“网购达人”,网购金额不超过2千元的顾客称为“非网购达人”.
( I)根据频率分布直方图估计网友购物金额的平均值;
( II)若抽取的“网购达人”中女性占12人,请根据条件完成上面的2×2列联表,并判断是否有99%的把握认为“网购达人”与性别有关?
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案