相关习题
 0  239264  239272  239278  239282  239288  239290  239294  239300  239302  239308  239314  239318  239320  239324  239330  239332  239338  239342  239344  239348  239350  239354  239356  239358  239359  239360  239362  239363  239364  239366  239368  239372  239374  239378  239380  239384  239390  239392  239398  239402  239404  239408  239414  239420  239422  239428  239432  239434  239440  239444  239450  239458  266669 

科目: 来源: 题型:选择题

18.已知x=lnπ,y=$lo{g}_{\frac{1}{3}}\frac{\sqrt{2}}{2}$,z=${π}^{-\frac{1}{2}}$,则(  )
A.x<y<zB.z<x<yC.z<y<xD.y<z<x

查看答案和解析>>

科目: 来源: 题型:选择题

17.在△ABC中,命题p:“B≠60°“,命题q:“△ABC的三个内角A,B,C不成等差数列“,那么p是q的
(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知数列{an}的前n项和Sn=2(an-1),等差数列{bn}满足b1=a1,b4=a3,其中n∈N*.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若Cn=(-1)nbnbn+1,求数列{cn}的前2n项和T2n

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知向量$\overrightarrow{m}$=($\sqrt{3}$cosωx,cosωx),$\overrightarrow{n}$=(sinωx,cosωx)(ω>0),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的最小正周期为π.
(Ⅰ)求ω的值及函数f(x)的单调递增区间;
(Ⅱ)在钝角△ABC中,角A,B,C所对的边分别为a,b,c,已知a=1,b=$\sqrt{3}$,当f(A)取得最大值时,求边c.

查看答案和解析>>

科目: 来源: 题型:填空题

14.正方体ABCD-A1B1C1D1的棱长为2,点P是线段BD1的中点,M是线段B1C1上的动点,则三棱锥M-PBC的体积为$\frac{2}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

13.“a<-2”是“函数y=ax+3在区间(-1,3)上存在零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥1}\\{x≤2}\end{array}\right.$,则z=$\frac{y+3}{x}$的最小值为(  )
A.-1B.7C.$\frac{5}{2}$D.1

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知集合A={x|1<x<3},B={x|y=log2(2-x)},则A∩B=(  )
A.(0,3)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e=$\sqrt{2}$,且它的一个顶点到较近焦点的距离为$\sqrt{2}$-1,则双曲线C的方程为x2-y2=1.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图所示,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,直线y=x被椭圆C截得的弦长为$\frac{4\sqrt{3}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点M(x0,y0)是椭圆C上的动点,过原点O引两条射线l1,l2与圆M:(x-x02+(y-y02=$\frac{2}{3}$分别相切,且l1,l2的斜率k1,k2存在.
①试问k1•k2是否定值?若是,求出该定值,若不是,说明理由;
②若射线l1,l2与椭圆C分别交于点A,B,求|OA|•|OB|的最大值.

查看答案和解析>>

同步练习册答案