相关习题
 0  239271  239279  239285  239289  239295  239297  239301  239307  239309  239315  239321  239325  239327  239331  239337  239339  239345  239349  239351  239355  239357  239361  239363  239365  239366  239367  239369  239370  239371  239373  239375  239379  239381  239385  239387  239391  239397  239399  239405  239409  239411  239415  239421  239427  239429  239435  239439  239441  239447  239451  239457  239465  266669 

科目: 来源: 题型:解答题

8.已知公差不为零的等差数列{an}的前n项和为Sn,若S10=110,且a1,a2,a4成等比数列
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足${b_n}=\frac{1}{{({{a_n}-1})({{a_n}+1})}}$,若数列{bn}前n项和Tn

查看答案和解析>>

科目: 来源: 题型:选择题

7.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.图1是源于其思想的一个程序框图,若输入的a,b分别为4,2,则输出的n等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=|x+2|-|2x-a|,(a∈R).
(Ⅰ)当a=3时,解不等式f(x)>0;
(Ⅱ)当x∈[0,+∞)时,f(x)<3恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=acosx+x2,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),a∈R.
(Ⅰ)若曲线y=f(x)在点($\frac{π}{6}$,f($\frac{π}{6}$))处的切线的斜率为$\frac{1}{2}+\frac{π}{3}$,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)若f(x)≥2恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

4.若函数f(x)=$\frac{1}{2}{x^2}$-mx+lnx有极值,则函数f(x)的极值之和的取值范围是(-∞,-3).

查看答案和解析>>

科目: 来源: 题型:解答题

3.设数列{an}满足a1+$\frac{{a}_{2}}{3}$+$\frac{{a}_{3}}{{3}^{2}}$+…+$\frac{{a}_{n}}{{3}^{n-1}}$=n,bn=nlog3a4n+1,n∈N*
(Ⅰ)设数列{an}、{bn}的通项;
(Ⅱ)设cn=$\frac{1}{{b}_{n}-1}$,求数列{cn}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:填空题

2.对于函数f(x)给出定义:设f′(x)是函数f(x)的导函数,f″(x)是函数f′(x)的导函数,若函数f″(x)有零点x0,则称(x0,f(x0))为函数f(x)的“拐点”.某同学经过探究发现:任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心,给定函数f(x)=$\frac{1}{3}$x3-x2-$\frac{1}{3}$x+2,请你根据上面探究结果,计算$\sum_{i1}^{4035}$f($\frac{i}{2017}$)=4035.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow{b}$=(cosθ,$\frac{1}{2}$),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则2cos($\frac{3π}{2}$+2θ)+$\frac{1}{2}$cos2θ的值为(  )
A.$\frac{13}{10}$B.$\frac{19}{10}$C.$\frac{3}{2}$D.-2

查看答案和解析>>

科目: 来源: 题型:选择题

20.如果执行如图的程序框图,输出的S=30,则判断框处为(  )
A.k<5B.k≤5C.k≥6D.k>6

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=(ax+2)lnx-(x2+ax-a-1)(a∈R)
( I)若函数f(x)的图象在x=e处的切线的斜率为$\frac{2}{e}$-2e,求f(x)的极值;
( II)当x>1时,f(x)的图象恒在x轴下方,求实数a的取值范围.

查看答案和解析>>

同步练习册答案