相关习题
 0  239283  239291  239297  239301  239307  239309  239313  239319  239321  239327  239333  239337  239339  239343  239349  239351  239357  239361  239363  239367  239369  239373  239375  239377  239378  239379  239381  239382  239383  239385  239387  239391  239393  239397  239399  239403  239409  239411  239417  239421  239423  239427  239433  239439  239441  239447  239451  239453  239459  239463  239469  239477  266669 

科目: 来源: 题型:解答题

2.设数列{an}是等差数列,数列{bn}的前n项和Sn满足Sn=2(bn-1),且a2=b1-1,a5=b3-1.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

1.若x,y满足约束条件$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-2y+1≤0}\\{2x-y+2≥0}\end{array}}\right.$,则Z=x2+y2的最小值为2.

查看答案和解析>>

科目: 来源: 题型:填空题

20.设向量$\overrightarrow{a}$=(4,m),$\overrightarrow{b}$=(1,-2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=2$\sqrt{10}$.

查看答案和解析>>

科目: 来源: 题型:选择题

19.设函数$f(x)=\left\{\begin{array}{l}{x^2}+bx+c,x≤0\\ lnx,x>0\end{array}\right.$,若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的根的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:解答题

18.设函数$f(x)=|\frac{x}{2}+\frac{1}{2a}|+|\frac{x}{2}-\frac{a}{2}|,(a>0)$.
(Ⅰ)证明:f(x)≥1;
(Ⅱ)若f(6)<5,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数f(x)=lnx-$\frac{a}{x}$,g(x)=$\frac{1}{2}{(x-1)^2}$-1.
(Ⅰ)若a>0,试判断f(x)在定义域内的单调性;
(Ⅱ)若f(x)在[1,e]上的最小值为$\frac{3}{2}$,求a的值;
(Ⅲ)当a=0时,若x≥1时,恒有x•f(x)≤λ[g(x)+x]成立,求λ的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知点F1(-1,0),F2(1,0),动点M到点F2的距离是$2\sqrt{2}$,线段MF1的中垂线交线段MF2于点P.
(Ⅰ)当点M变化时,求动点P的轨迹G的方程;
(Ⅱ)过点F2且不与x轴重合的直线L与曲线G相交于A,B两点,过点B作x轴的平行线与直线x=2相交于点C,则直线AC是否恒过定点,若是请求出该定点,若不是请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠ADC=120°,AB=2CD=2,平面D1DCC1垂直平面ABCD,D1C⊥AB,M是线段AB的中点.
(Ⅰ)求证:D1M∥面B1BCC1
(Ⅱ)若DD1=2,求平面C1D1M和平面ABCD所成的锐角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知$\overrightarrow m=(2cosx,y-2\sqrt{3}sinxcosx)$,$\overrightarrow n=(1,cosx)$,且$\overrightarrow m∥\overrightarrow n$.
(Ⅰ)试将y表示为x的函数f(x),并求f(x)的单调递增区间;
(Ⅱ)已知a、b、c分别为△ABC的三个内角A、B、C对应的边长,若$f(\frac{C}{2})=3$,且$c=2\sqrt{6}$,a+b=6,求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知抛物线关于y轴对称,顶点在原点,且过点M(x0,3),点M到焦点的距离为4,则OM(O为坐标原点)等于(  )
A.2$\sqrt{3}$B.$\sqrt{21}$C.$\frac{\sqrt{45}}{2}$D.21

查看答案和解析>>

同步练习册答案