相关习题
 0  239291  239299  239305  239309  239315  239317  239321  239327  239329  239335  239341  239345  239347  239351  239357  239359  239365  239369  239371  239375  239377  239381  239383  239385  239386  239387  239389  239390  239391  239393  239395  239399  239401  239405  239407  239411  239417  239419  239425  239429  239431  239435  239441  239447  239449  239455  239459  239461  239467  239471  239477  239485  266669 

科目: 来源: 题型:选择题

2.若集合A={x|x>$\frac{1}{2}$或x<0},集合B={x|(x+1)(x-2)<0},则A∩B等于(  )
A.{x|$\frac{1}{2}$<x<2}B.{x|-1<x<0或$\frac{1}{2}$<x<2}C.{x|-1<x<$\frac{1}{2}$}D.{x|0<x<$\frac{1}{2}$或1<x<2}

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的一条渐近线与直线2x+y-3=0垂直,则该双曲线的离心率是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.椭圆$\frac{{x}^{2}}{a}$+y2=1(a>1)与双曲线$\frac{{y}^{2}}{b}$-y2=1(b>0)有相同的焦点F1、F2,若P为两曲线的一个交点,则△PF1F2的面积为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知△ABC的面积为S,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=S,则tan2A的值为(  )
A.$\frac{1}{2}$B.2C.$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.在△ABC中,命题p:“B≠60°”,命题q:“△ABC不是等边三角形”,那么p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分又不必要条件

查看答案和解析>>

科目: 来源: 题型:填空题

17.关于x,y的不等式组$\left\{\begin{array}{l}{2x-y+1>0}\\{x+m<0}\\{y-m>0}\end{array}\right.$,表示的平面区域为D,若存在点P(x0,y0)∈D,满足x0-2y0=2,则实数m的取值范围是m<-$\frac{2}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

16.设G是△ABC的重心,点E是AG的中点,若$\overrightarrow{BA}$•$\overrightarrow{CA}$=4,$\overrightarrow{BG}$•$\overrightarrow{CG}$=-1,则$\overrightarrow{BE}$•$\overrightarrow{CE}$的值是(  )
A.-$\frac{7}{8}$B.$\frac{5}{8}$C.$\frac{7}{8}$D.$\frac{13}{8}$

查看答案和解析>>

科目: 来源: 题型:选择题

15.角A、B、C为△ABC的三个内角,函数f(x)=2sin(x-A)cosx+sin(B+C)(x∈R)的图象关于直线x=$\frac{5π}{12}$对称,则A=(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

14.直线m:kx+y+4=0(k∈R) 是圆C:x2+y2+4x-4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线n,则直线n被圆C所截得的弦长为(  )
A.$\sqrt{14}$B.$\sqrt{2}$C.$\sqrt{6}$D.2$\sqrt{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

13.设F1,F2分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点,双曲线上存在一点P使得∠F1PF2=60°,|OP|=2b,(O为坐标原点),则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{7}{6}$D.$\frac{{\sqrt{42}}}{6}$

查看答案和解析>>

同步练习册答案