相关习题
 0  239294  239302  239308  239312  239318  239320  239324  239330  239332  239338  239344  239348  239350  239354  239360  239362  239368  239372  239374  239378  239380  239384  239386  239388  239389  239390  239392  239393  239394  239396  239398  239402  239404  239408  239410  239414  239420  239422  239428  239432  239434  239438  239444  239450  239452  239458  239462  239464  239470  239474  239480  239488  266669 

科目: 来源: 题型:选择题

12.在△ABC中,AC=$\sqrt{2}$,AB=2,∠BAC=135°,D是BC的中点,M是AD上一点,且$\overrightarrow{AM}$=2$\overrightarrow{MD}$,则$\overrightarrow{MB}$•$\overrightarrow{MC}$的值是(  )
A.-$\frac{22}{9}$B.-$\frac{2}{9}$C.-$\frac{7}{3}$D.-$\frac{5}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知定义在R上的函数f(x)的周期为4,当x∈[-2,0]时,f(x)=x3,且函数y=f(x+2)的图象关于y轴对称,则f(2017)=(  )
A.20173B.8C.1D.-1

查看答案和解析>>

科目: 来源: 题型:选择题

10.2016年济南地铁正式开工建设,地铁时代的到来能否缓解济南的交通拥堵状况呢?某社团进行社会调查,得到的数据如表:
男性市民女性市民
认为能缓解交通拥堵4830
认为不能缓解交通拥堵1220
则下列结论正确的是(  )
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
P(x2≥k)0.050.0100.0050.001
k3.8416.6357.87910.828
A.有95%的把握认为“对能否缓解交通拥堵的认识与性别有关”
B.有95%的把握认为“对能否缓解交通拥堵的认识与性别无关”
C.有99%的把握认为“对能否缓解交通拥堵的认识与性别有关”
D.有99%的把握认为“对能否缓解交通拥堵的认识与性别无关”

查看答案和解析>>

科目: 来源: 题型:选择题

9.若直线x-y+m=0被圆(x-1)2+y2=5截得的弦长为2$\sqrt{3}$,则m的值为(  )
A.1B.-3C.1或-3D.2

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知直线ax-y=0(a∈R)与圆C:x2+y2-2ax-2y+2=0交于A,B两点,C为圆心,若∠ACB=$\frac{π}{3}$,则圆C的面积为(  )
A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知点C为圆${(x+\sqrt{3})^2}+{y^2}=16$的圆心,$F(\sqrt{3},0)$,P是圆上的动点,线段FP的垂直平分线交CP于点Q.
(1)求点Q的轨迹D的方程;
(2)设A(2,0),B(0,1),过点A的直线l1与曲线D交于点M(异于点A),过点B的直线l2与曲线D交于点N,直线l1与l2倾斜角互补.
①直线MN的斜率是否为定值?若是,求出该定值;若不是,说明理由;
②设△AMN与△BMN的面积之和为S,求S的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

6.对于函数f(x),若在定义域内存在实数x0,满足f(-x0)=-f(x0),则称f(x)为“局部奇函数”,已知f(x)=4x-m2x+1+m-3为定义R上的“局部奇函数”,则实数m的取值范围是(  )
A.$[1-\sqrt{3},+∞)$B.[-2,+∞)C.$[-2,2\sqrt{2}]$D.$[-2,1+\sqrt{3}]$

查看答案和解析>>

科目: 来源: 题型:解答题

5.在平面直角坐标系xOy中,动点S到点F(1,0)的距离与到直线x=2的距离的比值为$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求动点S的轨迹E的方程;
(Ⅱ)设点P是x轴上的一个动点,过P作斜率为$\frac{{\sqrt{2}}}{2}$的直线l交轨迹E于A,B两点,求证:|PA|2+|PB|2为定值.

查看答案和解析>>

科目: 来源: 题型:选择题

4.已知圆x2+y2=4,直线l:y=x+b,若圆x2+y2=4上恰有4个点到直线l的距离都等于1,则b的取值范围为(  )
A.(-1,1)B.[-1,1]C.$[{-\sqrt{2},\sqrt{2}}]$D.$({-\sqrt{2},\sqrt{2}})$

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,AB是圆O的直径,点C,D是圆O上异于A,B的点,CD∥AB,F为PD中点,PO⊥垂直于圆O所在的平面,∠ABC=60°.
(Ⅰ)证明:PB∥平面COF;
(Ⅱ)证明:AC⊥PD.

查看答案和解析>>

同步练习册答案