相关习题
 0  239296  239304  239310  239314  239320  239322  239326  239332  239334  239340  239346  239350  239352  239356  239362  239364  239370  239374  239376  239380  239382  239386  239388  239390  239391  239392  239394  239395  239396  239398  239400  239404  239406  239410  239412  239416  239422  239424  239430  239434  239436  239440  239446  239452  239454  239460  239464  239466  239472  239476  239482  239490  266669 

科目: 来源: 题型:解答题

12.已知函数f(x)=ex,g(x)=lnx+a.
(1)设h(x)=xf(x),求h(x)的最小值;
(2)若曲线y=f(x)与y=g(x)仅有一个交点P,证明:曲线y=f(x)与y=g(x)在点P处有相同的切线,且$a∈({2,\frac{5}{2}})$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知椭圆Γ:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$经过点$M({\sqrt{3},\frac{1}{2}})$,且离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆Γ的方程;
(2)设点M在x轴上的射影为点N,过点N的直线l与椭圆Γ相交于A,B两点,且$\overrightarrow{NB}+3\overrightarrow{NA}$=0,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

10.某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,茎叶图如图:若将月均课外阅读时间不低于30小时的学生称为“读书迷”.
(1)将频率视为概率,估计该校900名学生中“读书迷”有多少人?
(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.
(i)共有多少种不同的抽取方法?
(ii)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.

查看答案和解析>>

科目: 来源: 题型:选择题

9.在平面直角坐标系xOy中,圆O的方程为x2+y2=4,直线l的方程为y=k(x+2),若在圆O上至少存在三点到直线l的距离为1,则实数k的取值范围是(  )
A.$[{0,\frac{{\sqrt{3}}}{3}}]$B.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$C.$[{-\frac{1}{2},\frac{1}{2}}]$D.$[{0,\frac{1}{2}}]$

查看答案和解析>>

科目: 来源: 题型:选择题

8.函数$f(x)=cos({ωx+\frac{π}{6}})$(ω>0)的最小正周期为π,则f(x)满足(  )
A.在$({0,\frac{π}{3}})$上单调递增B.图象关于直线$x=\frac{π}{6}$对称
C.$f({\frac{π}{3}})=\frac{{\sqrt{3}}}{2}$D.当$x=\frac{5π}{12}$时有最小值-1

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知平面α⊥平面β,则“直线m⊥平面α”是“直线m∥平面β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目: 来源: 题型:解答题

6.某学校用简单随机抽样方法抽取了100名同学,对其日均课外阅读时间(单位:分钟)进行调查,结果如下:
t[0,15)[15,30)[30,45)[45,60)[60,75)[75,90)
男同学人数711151221
女同学人数89171332
若将日均课外阅读时间不低于60分钟的学生称为“读书迷”.
(1)将频率视为概率,估计该校4000名学生中“读书迷”有多少人?
(2)从已抽取的8名“读书迷”中随机抽取4位同学参加读书日宣传活动.
(i)求抽取的4位同学中既有男同学又有女同学的概率;
(ii)记抽取的“读书迷”中男生人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:填空题

5.数列{an}的前n项和为Sn,若Sn+an=4-$\frac{1}{{{2^{n-2}}}}({n∈{N^*}})$,则an=$\frac{n}{{2}^{n-1}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ 2x-y-1≤0\\ x+y-a≥0\end{array}\right.$,目标函数z=2x+y的最小值为-5,则实数a=-3.

查看答案和解析>>

科目: 来源: 题型:选择题

3.抛物线C:y2=4x的焦点为F,N为准线上一点,M为y轴上一点,∠MNF为直角,若线段MF的中点E在抛物线C上,则△MNF的面积为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$3\sqrt{2}$

查看答案和解析>>

同步练习册答案