相关习题
 0  239310  239318  239324  239328  239334  239336  239340  239346  239348  239354  239360  239364  239366  239370  239376  239378  239384  239388  239390  239394  239396  239400  239402  239404  239405  239406  239408  239409  239410  239412  239414  239418  239420  239424  239426  239430  239436  239438  239444  239448  239450  239454  239460  239466  239468  239474  239478  239480  239486  239490  239496  239504  266669 

科目: 来源: 题型:选择题

10.已知$\overrightarrow a=(2,1),\overrightarrow b=(0,-1)$,则$2\overrightarrow b+3\overrightarrow a$=(  )
A.(-6,1)B.(6,-1)C.(6,1)D.(-6,-1)

查看答案和解析>>

科目: 来源: 题型:选择题

9.y=$tan(4x+\frac{π}{3})$的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目: 来源: 题型:选择题

8.$sin(-\frac{π}{6})$的值等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

7.某网络营销部门为了统计某市网友2016年12月12日的网购情况,从该市当天参与网购的顾客中随机抽查了男女各30人,统计其网购金额,得到如下频率分布直方图:
网购达人非网购达人合计
男性30
女性1230
合计60
若网购金额超过2千元的顾客称为“网购达人”,网购金额不超过2千元的顾客称为“非网购达人”.
(Ⅰ)若抽取的“网购达人”中女性占12人,请根据条件完成上面的2×2列联表,并判断是否有99%的把握认为“网购达人”与性别有关?
(Ⅱ)该营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定12人,若需从这12人中随机选取3人进行问卷调查.设ξ为选取的3人中“网购达人”的人数,求ξ的分布列和数学期望.
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 来源: 题型:解答题

6.在极坐标系中,点$A({\sqrt{3},\frac{π}{6}}),B({\sqrt{3},\frac{π}{2}})$,曲线 $C:ρ=2cos({θ-\frac{π}{3}})\;(ρ≥0)$.以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(Ⅰ)在直角坐标系中,求点A,B的直角坐标及曲线C的参数方程;
(Ⅱ)设点M为曲线C上的动点,求|MA|2+|MB|2取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

5.某市春节期间7家超市广告费支出xi(万元)和销售额yi(万元)数据如表:
超市ABCDEFG
广告费支出xi1246111319
销售额yi19324044525354
(Ⅰ)若用线性回归模型拟合y与x的关系,求y与x的线性回归方程.
(Ⅱ)若用二次函数回归模型拟合y与x的关系,可得回归方程:$\hat y=-0.17{x^2}$+5x+20,经计算二次函数回归模型和线性回归模型的R2分别约为0.93和0.75,请用R2说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出3万元时的销售额.
参考数据:$\overline x=8,\overline y=42,\sum_{i=1}^7{x_i}{y_i}=2794,\sum_{i=1}^7{{x_i}^2}$=708.
参考公式:$\hat b=\frac{{\sum_{i=1}^n{x_i}{y_i}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$$,\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.某商场对A商品近30天的日销售量y(件)与时间t(天)的销售情况进行整理,得到如下数据统计分析,日销售量y(件)与时间t(天)之间具有线性相关关系
时间(t)246810
日销售量(y)3837323330
(1)请根据表提供的数据,用最小二乘法原理求出y关于t的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$t+a
(2)已知A商品近30天内的销售价格Z(元)与时间t(天)的关系为:z=$\left\{\begin{array}{l}{-t+100,(20≤t≤30,t∈N)}\\{t+20,(0<t<20,t∈Z)}\end{array}\right.$
根据(1)中求出的线性回归方程,预测t为何值时,A商品的日销售额最大(参考公式$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}\overline{t}$)

查看答案和解析>>

科目: 来源: 题型:填空题

3.定义在R上的偶函数f(x)的导函数为f′(x),若对任意的示数x,都有2f(x)+xf′(x)<2恒成立,则使x2f(x)-f(1)<x2-1成立的x的取值范围为x<-1或x>1.

查看答案和解析>>

科目: 来源: 题型:选择题

2.《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代具有很高的数学水平,其求法是“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂,减上,余四约之,为实,一为从偶,开平方得积”,若把这段文字写成公式,即S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-(\frac{{c}^{2}+{a}^{2}-{b}^{2}}{2})^{2}]}$,现有周长为10的△ABC满足sinA:sinB:sin:C=5:7:8,试用以上给出的公式求得△ABC的面积为(  )
A.$\frac{5}{8}$B.$\frac{5\sqrt{3}}{2}$C.10$\sqrt{3}$D.$\frac{35}{8}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C2:${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$.
(Ⅰ)求曲线C1的普通方程和C2的直角坐标方程;
(Ⅱ)若C1与C2相交于A、B两点,设点F(1,0),求$\frac{1}{|FA|}+\frac{1}{|FB|}$的值.

查看答案和解析>>

同步练习册答案