相关习题
 0  239347  239355  239361  239365  239371  239373  239377  239383  239385  239391  239397  239401  239403  239407  239413  239415  239421  239425  239427  239431  239433  239437  239439  239441  239442  239443  239445  239446  239447  239449  239451  239455  239457  239461  239463  239467  239473  239475  239481  239485  239487  239491  239497  239503  239505  239511  239515  239517  239523  239527  239533  239541  266669 

科目: 来源: 题型:填空题

6.已知a,b为正实数,直线y=x-a与曲线y=ln(x+b)相切,则$\frac{2}{a}$+$\frac{3}{b}$的最小值为5+2$\sqrt{6}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知某程序框图如图所示,则执行该程序后输出的结果是-1.

查看答案和解析>>

科目: 来源: 题型:选择题

4.函数f(x)=Asin(ωx+φ)(A>0,ω>0,$|φ|<\frac{π}{2}$)的图象如图所示,为了得到g(x)=Asinωx的图象,可以将f(x)的图象(  )
A.向左平移$\frac{π}{12}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个单位长度D.向右平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目: 来源: 题型:选择题

3.下列叙述中正确的是(  )
A.命题“若a>1,则a2>1”的否命题为:“若a>1,则a2≤1”
B.命题“?x0>1,使得-x02+2x0-1≥0”的否定“?x≤1,使得-x2+2x-1<0”
C.“x>-1”是“$\frac{1}{x}<-1$”成立的必要不充分条件
D.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,所以f(x)=sin(x2+1)是奇函数,上述推理错误的原因是大前提不正确

查看答案和解析>>

科目: 来源: 题型:选择题

2.若复数z满足(1+i)z=2i,其中i为虚数单位,则$\overline z$(  )
A.1-iB.1+iC.2-2iD.2+2i

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知动圆M恒过F(1,0)且与直线x=-1相切,动圆圆心M的轨迹记为C;直线x=-1与x轴的交点为N,过点N且斜率为k的直线l与轨迹C有两个不同的公共点A,B,O为坐标原点.
(1)求动圆圆心M的轨迹C的方程,并求直线l的斜率k的取值范围;
(2)点D是轨迹C上异于A,B的任意一点,直线DA,DB分别与过F(1,0)且垂直于x轴的直线交于P,Q,证明:$\overrightarrow{OP}•\overrightarrow{OQ}$为定值,并求出该定值;
(3)对于(2)给出一般结论:若点$F({\frac{p}{2},0})$,直线$x=-\frac{p}{2}$,其它条件不变,求$\overrightarrow{OP}•\overrightarrow{OQ}$的值(可以直接写出结果).

查看答案和解析>>

科目: 来源: 题型:解答题

20.奥运会乒乓球比赛共设男子单打、女子单打、男子团体、女子团体共四枚金牌,保守估计中国乒乓球男队单打或团体获得一枚金牌的概率均为$\frac{3}{4}$,中国乒乓球女队单打或团体获得一枚金牌的概率均为$\frac{4}{5}$.
(1)求按此估计中国乒乓球女队比中国乒乓球男队多获得一枚金牌的概率;
(2)记中国乒乓球队获得的金牌数为ξ,按此估计ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目: 来源: 题型:解答题

19.在数列{an}(n∈N*)中,其前n项和为Sn,满足$2{S_n}={n^2}-n$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\left\{\begin{array}{l}\frac{1}{{\sqrt{{a_{n+1}}}+\sqrt{{a_{n+3}}}}},n=2k-1\\ \frac{n+1}{{a_{n+1}^2•a_{n+3}^2}},n=2k\end{array}\right.$(k为正整数),求数列{bn}的前2n项和T2n

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2+3cosα}\\{y=1+3sinα}\end{array}\right.$(α为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=-t}\end{array}\right.$(t为参数),以原点为极点,x轴非负半轴为极轴建立坐标系.
(1)求曲线C和直线l的极坐标方程;
(2)求曲线C和直线l的交点的极坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数f(x)=xlnx,g(x)=$\frac{a}{2}{x^2}$+x-a(a∈R).
(Ⅰ)若直线x=m(m>0)与曲线y=f(x)和y=g(x)分别交于M,N两点.设曲线y=f(x)在点M处的切线为l1,y=g(x)在点N处的切线为l2
(ⅰ)当m=e时,若l1⊥l2,求a的值;
(ⅱ)若l1∥l2,求a的最大值;
(Ⅱ)设函数h(x)=f(x)-g(x)在其定义域内恰有两个不同的极值点x1,x2,且x1<x2.若λ>0,且λlnx2-λ>1-lnx1恒成立,求λ的取值范围.

查看答案和解析>>

同步练习册答案