相关习题
 0  239377  239385  239391  239395  239401  239403  239407  239413  239415  239421  239427  239431  239433  239437  239443  239445  239451  239455  239457  239461  239463  239467  239469  239471  239472  239473  239475  239476  239477  239479  239481  239485  239487  239491  239493  239497  239503  239505  239511  239515  239517  239521  239527  239533  239535  239541  239545  239547  239553  239557  239563  239571  266669 

科目: 来源: 题型:解答题

19.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$.
(Ⅰ)求sinx-cosx的值;
(Ⅱ)求4sinxcosx-cos2x的值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.某公司为了解下属某部门对企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,得到的频率分布表如下:
分组频数频率
[50,60)50.1
[60,70)m0.2
[70,80)15n
[80,90)120.24
80.16
合计501
(Ⅰ)求出频率分布表中m、n位置的相应数据,并画出频率分布直方图;
(Ⅱ)同一组中的数据用区间的中点值作代表,求这50名职工对该部门的评分的平均分.

查看答案和解析>>

科目: 来源: 题型:解答题

17.(Ⅰ)求值:$\frac{{tan150°cos{{210}°}sin({-60°})}}{{sin(-30°)cos{{120}°}}}$;
(Ⅱ)化简:$\frac{sin(-α)cos(π+α)tan(2π+α)}{cos(2π+α)sin(π-α)tan(-α)}$.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,O为坐标原点,点P(1,$\frac{\sqrt{2}}{2}$)在椭圆上,连接PF1交y轴于点Q,点Q满足$\overrightarrow{PQ}$=$\overrightarrow{Q{F}_{1}}$.直线l不过原点O且不平行于坐标轴,l与椭圆C有两个交点A,B.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点M($\frac{5}{4}$,0),若直线l过椭圆C的右焦点F2,证明:$\overrightarrow{MA}$•$\overrightarrow{MB}$为定值;
(Ⅲ)若直线l过点(0,2),设N为椭圆C上一点,且满足$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{ON}$,求实数λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.设公比q>0的等比数列{an}的前n项和为Sn,且a1=1,S4=5S2,数列{bn}的前n项和为Tn,满足b1=1,Tn=n2bn,n∈N*.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设Cn=(Sn+1)(nbn-λ),若Cn+1<Cn,求实数λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知各项为正数的数列{an},满足$\frac{1}{{{a_{n+1}}}}=\frac{1}{{{a_n}+1}}$,n∈N*,其中a1=1,Sn为其前n项的和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列$\left\{{\left.{\frac{1}{S_n}}\right\}}\right.$的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

13.设函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0)的周期为π.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)说明函数f(x)的图象可由y=sinx的图象经过怎样的变换而得到.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知$θ∈(0,\frac{π}{2})$,$sinθ=\frac{3}{5}$.
(Ⅰ)求$sin(θ-\frac{π}{6})$的值;
(Ⅱ)求tan2θ的值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.在△ABC中,a=1,b=$\sqrt{3}$,B=$\frac{π}{3}$,则△ABC的内切圆的半径是$\frac{\sqrt{3}-1}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知[x]表示不大于x的最大整数,设函数f(x)=[log2x],得到下列结论:
结论1:当1<x<2时,f(x)=0;
结论2:当2<x<4时,f(x)=1;
结论3:当4<x<8时,f(x)=2;
照此规律,得到结论10:当29<x<210时,f(x)=9.

查看答案和解析>>

同步练习册答案