相关习题
 0  239428  239436  239442  239446  239452  239454  239458  239464  239466  239472  239478  239482  239484  239488  239494  239496  239502  239506  239508  239512  239514  239518  239520  239522  239523  239524  239526  239527  239528  239530  239532  239536  239538  239542  239544  239548  239554  239556  239562  239566  239568  239572  239578  239584  239586  239592  239596  239598  239604  239608  239614  239622  266669 

科目: 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$sin 2xsin φ+cos2xcos φ-$\frac{1}{2}$sin($\frac{π}{2}$+φ)(0<φ<π),其图象过点($\frac{π}{6}$,$\frac{1}{2}$).
(1)求φ的值;
(2)求函数f(x)的单调增区间;
(3)将函数y=f(x)的图象上各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.函数y=b+asinx(a<0)的最大值为-1,最小值为-5,
(1)求a,b的值;    
(2)求y=tan(3a+b)x的最小正周期.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知数列{an}中,a1=1,a3=4.
(Ⅰ)若数列{an}是等差数列,求a11的值;
(Ⅱ)若数列{$\frac{1}{1+{a}_{n}}$}是等差数列,求数列{an}的通项公式.

查看答案和解析>>

科目: 来源: 题型:选择题

2.若不等式n2-n(λ+1)+7≥λ,对一切n∈N*恒成立,则实数λ的取值范围(  )
A.λ≤3B.λ≤4C.2≤λ≤3D.3≤λ≤4

查看答案和解析>>

科目: 来源: 题型:解答题

1.在数列{an}中,a1=1,并且对于任意n∈N*,都有${a_{n+1}}=\frac{a_n}{{2{a_n}+1}}$.
(1)证明数列$\left\{{\frac{1}{a_n}}\right\}$为等差数列,并求{an}的通项公式;
(2)设数列bn=an.an+1,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知数列{an}满足a1=0,an+1=an+2n,那么a2009的值是(  )
A.2 008×2009B.2008×2007C.2009×2 010D.20092

查看答案和解析>>

科目: 来源: 题型:解答题

19.对于无穷数列{xn}和函数f(x),若xn+1=f(xn)(n∈N+),则称f(x)是数列{xn}的母函数.
(Ⅰ)定义在R上的函数g(x)满足:对任意α,β∈R,都有g(αβ)=αg(β)+βg(α),且$g({\frac{1}{2}})=1$;又数列{an}满足${a_n}=g({\frac{1}{2^n}})$.
(1)求证:f(x)=x+2是数列{2nan}的母函数;
(2)求数列{an}的前项n和Sn
(Ⅱ)已知$f(x)=\frac{2016x+2}{x+2017}$是数列{bn}的母函数,且b1=2.若数列$\left\{{\frac{{{b_n}-1}}{{{b_n}+2}}}\right\}$的前n项和为Tn,求证:$25({1-{{0.99}^n}})<{T_n}<250({1-{{0.999}^n}})({n≥2})$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知在△ABC中,b(sinB+sinC)=(a-c)(sinA+sinC)(其中角A,B,C所对的边分别为a,b,c)且∠B为钝角.(1)求角A的大小;
(2)若$a=\frac{{\sqrt{3}}}{2}$,求b+c的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知函数$f(x)=2sinxcosx-\sqrt{3}cos2x+1$(x∈R).
(1)化简f(x)并求f(x)的最小正周期;
(2)求f(x)在区间$x∈[\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

16.某同学在研究性学习中,关于三角形与三角函数知识的应用(约定三内角A、B、C所对的边分别是a,b,c)得出如下一些结论:
(1)若△ABC是钝角三角形,则tanA+tanB+tanC>0;
(2)若△ABC是锐角三角形,则cosA+cosB>sinA+sinB;
(3)在三角形△ABC中,若A<B,则cos(sinA)<cos(tanB)
(4)在△ABC中,若$sinB=\frac{2}{5},tanC=\frac{3}{4}$,则A>C>B
其中错误命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案