相关习题
 0  239469  239477  239483  239487  239493  239495  239499  239505  239507  239513  239519  239523  239525  239529  239535  239537  239543  239547  239549  239553  239555  239559  239561  239563  239564  239565  239567  239568  239569  239571  239573  239577  239579  239583  239585  239589  239595  239597  239603  239607  239609  239613  239619  239625  239627  239633  239637  239639  239645  239649  239655  239663  266669 

科目: 来源: 题型:选择题

10.已知$\frac{m}{1-i}=1+ni$,其中m、n是实数,i是虚数单位,则m+ni=(  )
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知数列{an}满足${a_1}=\frac{1}{2}$,${a_{n+1}}=\frac{{2{a_n}}}{{1+{a_n}}},n∈{N^*}$.
(I)求证:数列$\left\{{\frac{1}{a_n}-1}\right\}$是等比数列,并求数列{an}的通项公式;
(II)令bn=$\frac{n}{{a}_{n}}$,(n∈N*),设数列{bn}的前n项和为Sn,求证:当n≥3时,Sn>$\frac{{n}^{2}}{2}$+4.

查看答案和解析>>

科目: 来源: 题型:解答题

8.在△ABC中,a、b、c分别是三个内角A、B、C的对边,若向量$\overrightarrow x$=$(a,\sqrt{3}b)$与向量$\overrightarrow y=(cosA,sinB)$共线
(1)求角A;
(2)若a=2,求b+c得取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知等差数列{an}的公差为2,若a2,a3,a6成等比数列
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_{n+1}}{a_n}}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目: 来源: 题型:解答题

6.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若满足${a^2}={(b-c)^2}+(2-\sqrt{3})bc$.
(Ⅰ)求角A的大小;
(Ⅱ)若$\frac{1-cos2A}{1-cos2B}=\frac{a}{b}$,且${S_{△ABC}}=\sqrt{3}$,求边长c.

查看答案和解析>>

科目: 来源: 题型:填空题

5.在△ABC中,CB=3,CA=4,$|{\overrightarrow{CA}+\overrightarrow{CB}}|=|{\overrightarrow{CA}-\overrightarrow{CB}}|$,M是线段AB上的动点(含A,B两个端点).若$\overrightarrow{C{M}}=x\overrightarrow{C{A}}+y\overrightarrow{C{B}}$,(x,y∈R),则|x$\overrightarrow{CA}$-y$\overrightarrow{CB}$|的取值范围是[$\frac{12}{5}$,4].

查看答案和解析>>

科目: 来源: 题型:选择题

4.在△ABC中,a2=b2+c2-bc,则A等于(  )
A.45°B.120°C.60°D.30°

查看答案和解析>>

科目: 来源: 题型:解答题

3.设函数f(x)=sinx-cosx+x+1,0<x<2π,求函数f(x)的单调区间与极值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.某校高一某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏(阴影部分为破坏部分),其可见部分如图所示,据此解答如下问题:

(1)计算频率分布直方图中[80,90)间的矩形的高;
(2)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份的分数在[90,100]之间的概率;
(3)根据频率分布直方图估计这次测试的平均分.

查看答案和解析>>

科目: 来源: 题型:解答题

1.求证:
(1)a2+b2+c2≥ab+ac+bc;  
(2)$\sqrt{6}$+$\sqrt{7}$>2$\sqrt{2}$+$\sqrt{5}$.

查看答案和解析>>

同步练习册答案