相关习题
 0  239474  239482  239488  239492  239498  239500  239504  239510  239512  239518  239524  239528  239530  239534  239540  239542  239548  239552  239554  239558  239560  239564  239566  239568  239569  239570  239572  239573  239574  239576  239578  239582  239584  239588  239590  239594  239600  239602  239608  239612  239614  239618  239624  239630  239632  239638  239642  239644  239650  239654  239660  239668  266669 

科目: 来源: 题型:填空题

20.命题“?x0∈R,x02>0”的否定是?x∈R,x2≤0.

查看答案和解析>>

科目: 来源: 题型:解答题

19.(1)求函数$y=\sqrt{1-cos\frac{x}{2}}$的定义域;
(2)求函数$y=\frac{3sinx+1}{sinx-2}$的值域.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$=(1,$\sqrt{2}$),$\overrightarrow{b}$=($\frac{1}{2}$,sinθ),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则锐角θ=$\frac{π}{4}$.

查看答案和解析>>

科目: 来源: 题型:选择题

17.$f(x)=Asin(ωx+φ)(A>0,|φ|<\frac{π}{2})$的图象如图所示,为了得到f(x)的图象,则只要将g(x)=cos2x的图象(  )
A.向右平移$\frac{π}{12}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向左平移$\frac{π}{12}$个单位长度D.向左平移$\frac{π}{6}$个单位长度

查看答案和解析>>

科目: 来源: 题型:选择题

16.$cos\sqrt{2},sin\sqrt{2},tan\sqrt{2}$的大小关系是(  )
A.$sin\sqrt{2}<cos\sqrt{2}<tan\sqrt{2}$B.$cos\sqrt{2}<sin\sqrt{2}<tan\sqrt{2}$C.$cos\sqrt{2}<tan\sqrt{2}<sin\sqrt{2}$D.$sin\sqrt{2}<tan\sqrt{2}<cos\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

15.下列叙述中,正确的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{BA}$=$\overrightarrow{0}$
B.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|且$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$=$\overrightarrow{b}$
C.若|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|,则$\overrightarrow{a}$⊥$\overrightarrow{b}$
D.若向量$\overrightarrow{b}$与向量$\overrightarrow{a}$共线,则有且只有一个实数λ,使得$\overrightarrow{b}$=λ$\overrightarrow{a}$

查看答案和解析>>

科目: 来源: 题型:选择题

14.设集合M={3,a},N={x|x2-3x<0,x∈Z},M∩N={1},则M∪N为(  )
A.{1,3,a}B.{1,2,3,a}C.{1,2,3}D.{1,3}

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知二项式(x-$\frac{1}{x}$)6,则展开式中x2项的系数为15.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知数列{an}的通项公式an=nsin$\frac{nπ}{2}$,其前n项和为Sn,则S2016=-1008.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知△ABC中,角A,B,C对应的分别是a,b,c,若a=4,b=6,C=60°.
(1)求$\overrightarrow{BC}•\overrightarrow{CA}$;
(2)求$\overrightarrow{CA}$在$\overrightarrow{BC}$方向上的投影.

查看答案和解析>>

同步练习册答案