相关习题
 0  239502  239510  239516  239520  239526  239528  239532  239538  239540  239546  239552  239556  239558  239562  239568  239570  239576  239580  239582  239586  239588  239592  239594  239596  239597  239598  239600  239601  239602  239604  239606  239610  239612  239616  239618  239622  239628  239630  239636  239640  239642  239646  239652  239658  239660  239666  239670  239672  239678  239682  239688  239696  266669 

科目: 来源: 题型:选择题

6.“石头、剪刀、布”,又称“猜丁壳”,是一种流传多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在话音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小千和大年两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小千和大年比赛至第四局小千胜出的概率是(  )
A.$\frac{1}{27}$B.$\frac{2}{27}$C.$\frac{2}{81}$D.$\frac{8}{81}$

查看答案和解析>>

科目: 来源: 题型:选择题

5.定义在R上的函数f(x)使不等式${f^'}(2x)>\frac{ln2}{2}f(2x)$恒成立,其中f'(x)是f(x)的导数,则(  )
A.$\frac{f(2)}{f(0)}>2,\frac{f(0)}{{f({-2})}}>2$B.f(2)>2f(0)>4f(-2)C.$\frac{f(2)}{f(0)}<2,\frac{f(0)}{{f({-2})}}<2$D.f(2)<2f(0)<4f(-2)

查看答案和解析>>

科目: 来源: 题型:填空题

4.给出下列命题:①若a<b<0,则$\frac{1}{a}$<$\frac{1}{b}$;②若a>0,b>0,则$\frac{a+b}{2}$≥$\sqrt{ab}$≥$\frac{ab}{a+b}$;③若a<b<0,则a2>ab>b2;④lg9•lg 11<1;⑤若a>b,$\frac{1}{a}$>$\frac{1}{b}$,则a>0,b<0;⑥正数x,y满足$\frac{1}{x}$+$\frac{1}{y}$=1,则x+2y的最小值为6.其中正确命题的序号是②③④⑤.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知-1≤a≤3,2≤b≤4,则2a-b的取值范围是(  )
A.[-6,4]B.[0,10]C.[-4,2]D.[-5,1]

查看答案和解析>>

科目: 来源: 题型:选择题

2.下列结论正确的是(  )
A.若ac<bc,则a<bB.若a2<b2,则a<b
C.若a>b,c<0,则ac<bcD.若$\sqrt{a}$<$\sqrt{b}$,则a>b

查看答案和解析>>

科目: 来源: 题型:填空题

1.设x,y满足不等式组$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,若z=ax+by(a>0,b>0)的最大值为4,则$\frac{1}{a}+\frac{2}{3b}$的最小值为4..

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知函数f(x)=ax2-c满足:-4≤f(1)≤-1,-1≤f(2)≤5,则f(3)应满足(  )
A.-7≤f(3)≤26B.-4≤f(3)≤15C.-1≤f(3)≤20D.$-\frac{28}{3}≤f(3)≤\frac{35}{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知x与y之间的一组数据:
x0246
ya353a
已求得关于y与x的线性回归方程y=1.2x+0.4,则a的值为2.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=x(x-m)2在x=2处有极大值.
(1)求实数m的值;
(2)若关于x的方程f(x)=a有三个不同的实根,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知命题p:对?x∈R,都有$\sqrt{3}sinx+cosx>m$,命题q:?x∈R,使得x2+mx+1≤0,如果“p∨q”是真命题,且“p∧q”是假命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案