相关习题
 0  239503  239511  239517  239521  239527  239529  239533  239539  239541  239547  239553  239557  239559  239563  239569  239571  239577  239581  239583  239587  239589  239593  239595  239597  239598  239599  239601  239602  239603  239605  239607  239611  239613  239617  239619  239623  239629  239631  239637  239641  239643  239647  239653  239659  239661  239667  239671  239673  239679  239683  239689  239697  266669 

科目: 来源: 题型:填空题

16.将全体正整数ai,j从左向右排成一个直角三角形数阵:
按照以上排列的规律,若定义$f(i,j)={2^{{a_{i,j}}}}$,则log2$\frac{f(20,3)}{4}$=191.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距6海里,渔船乙以5 海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.
(1)求渔船甲的速度;
(2)求sinα的值.

查看答案和解析>>

科目: 来源: 题型:选择题

14.若(1-2x)2017=${a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2017}}{x^{2017}}$,则$\frac{a_1}{2}+\frac{a_2}{2^2}+…\frac{{{a_{2017}}}}{{{2^{2017}}}}$的值为(  )
A.2B.0C.-1D.-2

查看答案和解析>>

科目: 来源: 题型:选择题

13.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),(点P与点A,B不重合),则△PAB的面积最大值是(  )
A.$2\sqrt{5}$B.5C.$\frac{5}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.某产品的广告费用x(百万元)与销售额y(百万元)的统计数据如表:
x23479
y2633m5475
根据表中数据,用最小二乘法得出y与x的线性回归方程为$\stackrel{∧}{y}$=8.6x+5,则表中的m的值为(  )
A.46B.48C.50D.52

查看答案和解析>>

科目: 来源: 题型:解答题

11.某养猪厂建造一间背面靠墙的长方形猪圈,已知猪圈地面面积为18平方米,将猪圈分割成(如图所示)六个小猪圈,猪圈高度为1米,猪圈每平方米的造价为500元,且不计猪圈背面和地面的费用与猪圈的厚度,问怎样设计总造价最低,最低造价是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

10.在直角坐标系xOy中,曲线C的方程为:(x-1)2+y2=1以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)直线l1的极坐标方程是2ρsin(θ+$\frac{π}{3}$)+3$\sqrt{3}$=0,直线l2:θ=$\frac{π}{3}$(ρ∈R)与曲线C交于O、P两点,与直线l1的交于点Q,求线段PQ的长.

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知x8=a0+a1(x+1)+a2(x+1)2+…+a8(x+1)8,则a7=-8.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知直线l:x-$\sqrt{3}$y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|=(  )
A.$2\sqrt{3}$B.4C.$4\sqrt{3}$D.6

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图为某市2017年2月28天的日空气质量指数折线图.

由中国空气质量在线监测分析平台提供的空气质量指数标准如下:
空气质量指数(0,50](50,100](100,150](150,200](200,300]300以上
空气质量等级1级优2级良3级轻度污染4级中度污染5级重度污染6级严重污染
(Ⅰ)请根据所给的折线图补全下方的频率分布直方图(并用铅笔涂黑矩形区域),并估算该市2月份空气质量指数监测数据的平均数(保留小数点后一位);

(Ⅱ)研究人员发现,空气质量指数测评中PM2.5与燃烧排放的CO两个项目存在线性相关关系,以100ug/m3为单位,如表给出PM2.5与CO的相关数据:
CO(x)0.511.5
PM2.5(y)124
求y关于x的回归方程,并估计当CO排放量是200ug/m3时,PM2.5的值.
(用最小二乘法求回归方程的系数是$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n•{{\overline x}^2}}}}$$,\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

同步练习册答案