相关习题
 0  239559  239567  239573  239577  239583  239585  239589  239595  239597  239603  239609  239613  239615  239619  239625  239627  239633  239637  239639  239643  239645  239649  239651  239653  239654  239655  239657  239658  239659  239661  239663  239667  239669  239673  239675  239679  239685  239687  239693  239697  239699  239703  239709  239715  239717  239723  239727  239729  239735  239739  239745  239753  266669 

科目: 来源: 题型:解答题

12.已知函数f(x)=ex-ax+a(a∈R),其中e为自然对数的底数.
(1)讨论函数y=f(x)的单调性;
(2)函数y=f(x)的图象与x轴交于A(x1,0),B(x2,0)两点,x1<x2,点C在函数y=f(x)的图象上,且△ABC为等腰直角三角形,记$\sqrt{\frac{{{x_2}-1}}{{{x_1}-1}}}=t$,求at-(a+t)的值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取20根棉花纤维进行统计,结果如下表:(记纤维长度不低于300mm的为“长纤维”,其余为“短纤维”)
纤维长度(0,100)[100,200)[200,300)[300,400)[400,500]
甲地(根数)34454
乙地(根数)112106
(1)由以上统计数据,填写下面2×2列联表,并判断能否在犯错误概率不超过0.025的前提下认为“纤维长度与土壤环境有关系”.
甲地乙地总计
长纤维91625
短纤维11415
总计202040
附:(1)${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$;
(2)临界值表;
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(2)现从上述40根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检
测,在这8根纤维中,记乙地“短
纤维”的根数为X,求X的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知菱形ABCD的边长为2,∠BAC=60°,则$\overrightarrow{BC}•\overrightarrow{AC}$=2.

查看答案和解析>>

科目: 来源: 题型:填空题

9.${(1+\sqrt{x})^{10}}$的展开式中x4的系数是45.(用数字作答)

查看答案和解析>>

科目: 来源: 题型:选择题

8.正三角形ABC的两个顶点A,B在抛物线x2=2py(p>0)上,另一个顶点C是此抛物线焦点,则满足条件的三角形ABC的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:选择题

7.等差数列{an}的前n项和为Sn,已知a1-a5-a10-a15+a19=2,则S19的值为(  )
A.38B.-19C.-38D.19

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知$a=\sqrt{3}$,$b={125^{\frac{1}{6}}}$,$c={log_{\frac{1}{6}}}\frac{1}{7}$,则下列不等关系正确的是(  )
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目: 来源: 题型:选择题

5.设集合$A=\{x|\frac{1}{4}≤{2^x}≤16\}$,$B=\{x|\frac{2x-3}{x-3}>1\}$,则A∩B=(  )
A.{x|-2≤x<0或3<x≤4}B.{x|-2≤x≤0或3≤x≤4}C.{x|-2<x≤4}D.{x|0<x<3}

查看答案和解析>>

科目: 来源: 题型:选择题

4.复数$\frac{2i}{1+i}$=(  )
A.-iB.1+iC.iD.1-i

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知抛物线y2=2px(p>0)的焦点为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,且其准线被该双曲线截得的弦长是$\frac{2}{3}$b,则该双曲线的离心率为(  )
A.$\frac{13}{9}$B.$\frac{10}{9}$C.$\frac{\sqrt{13}}{3}$D.$\frac{\sqrt{10}}{3}$

查看答案和解析>>

同步练习册答案