相关习题
 0  239593  239601  239607  239611  239617  239619  239623  239629  239631  239637  239643  239647  239649  239653  239659  239661  239667  239671  239673  239677  239679  239683  239685  239687  239688  239689  239691  239692  239693  239695  239697  239701  239703  239707  239709  239713  239719  239721  239727  239731  239733  239737  239743  239749  239751  239757  239761  239763  239769  239773  239779  239787  266669 

科目: 来源: 题型:填空题

7.仔细观察下面○和●的排列规律,○●○○●○○○●○○○○●○○○○○●○○○○○○●…若依此规律继续下去,得到一序列的○和●,那么在前120个○和●中,●的个数是:14.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(1)当a=2时,判断函数f(x)的单调性;
(2)当a=4时,给出两组直线:6x+y+m=0与3x-y+n=0,其中m,n为常数,判断这两类直线中是否存在y=f(x)的切线,若存在,求出该切线方程.
(3)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),若$\frac{h(x)-g(x)}{{x-{x_0}}}>0$在D内恒成立,则称P为函数y=h(x)的“类对称点”,当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,平行四边形PABC中,∠PAC=∠ABC=90°,PA=AB=2$\sqrt{3}$,AC=4,现把△PAC沿AC折起,使PA与平面ABC成60°角,设此时P在平面ABC上的投影为O点(O与B在AC的同侧).

(Ⅰ)求证:OB∥平面PAC;
(Ⅱ)试问:线段PA上是否在存在一点M,使得二面角M-BC-A的余弦值为$\frac{5\sqrt{37}}{37}$?若存在,指出M的位置,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.为了研究学生喜爱打篮球是否与性别有关,某兴趣小组对本班48名同学进行了问卷调查,得到了如下列联表:
喜爱打篮球不喜爱打篮球合计
男生22628
女生101020
合计321648
(Ⅰ)判断是否有95%的把握认为喜爱篮球与性别有关?请说明理由;
(Ⅱ)若从女同学中抽取2人进一步调查,设其中喜爱打篮球的女同学人数为X,求X的分布列与期望.
附:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0500.0100.001
k3.8416.63510.828

查看答案和解析>>

科目: 来源: 题型:选择题

3.某个命题与自然数有关,如果当n=k(k∈N*)时该命题成立,那么可以推得n=k+1时该命题也成立.现已知n=5时该命题不成立,那么(  )
A.n=4时该命题不成立
B.n=6时该命题不成立
C.n为大于5的某个自然数时该命题成立
D.以上答案均不对

查看答案和解析>>

科目: 来源: 题型:选择题

2.如果随机变量ξ~B(6,$\frac{1}{2}$),则P(ξ=3)的值为(  )
A.$\frac{5}{16}$B.$\frac{5}{8}$C.$\frac{3}{16}$D.$\frac{7}{16}$

查看答案和解析>>

科目: 来源: 题型:选择题

1.设随机变量?服从?~N(2,9),若P(?>c+1)=P(?<c-1),则c=(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目: 来源: 题型:解答题

20.设函数f(x)=ln(1+x)-$\frac{x}{1+ax}$(a>0)
(Ⅰ)求函数f(x)在点(0,f(0))处的切线方程;
(Ⅱ)讨论函数f(x)在区间[0,1]上的单调性;
(Ⅲ)求证:($\frac{2017}{2016}$)2016.4<e<($\frac{2017}{2016}$)2016.5

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=$\frac{3x}{ax+b}$,f(1)=1,f($\frac{1}{2}$)=$\frac{3}{4}$,数列{xn}满足x1=$\frac{3}{2}$,xn+1=f(xn),n∈N*
(Ⅰ)求x2,x3
(Ⅱ)求数列{xn}的通项公式.
(Ⅲ)求证:$\sum_{k=1}^{n}\frac{{x}_{k}}{{3}^{k}}$<$\frac{3}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.
(Ⅰ)求证:AD⊥平面BFED;
(Ⅱ)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为60°,求PE的长.

查看答案和解析>>

同步练习册答案