相关习题
 0  239608  239616  239622  239626  239632  239634  239638  239644  239646  239652  239658  239662  239664  239668  239674  239676  239682  239686  239688  239692  239694  239698  239700  239702  239703  239704  239706  239707  239708  239710  239712  239716  239718  239722  239724  239728  239734  239736  239742  239746  239748  239752  239758  239764  239766  239772  239776  239778  239784  239788  239794  239802  266669 

科目: 来源: 题型:选择题

17.过抛物线C:y2=4x的焦点F,且斜率为$\sqrt{3}$的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为(  )
A.$\sqrt{5}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

16.函数f(x)=sin(2x+$\frac{π}{3}$)的最小正周期为(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=|x+1|-|x-2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.在直角坐标系xOy中,直线l1的参数方程为$\left\{\begin{array}{l}{x=2+t}\\{y=kt}\end{array}\right.$,(t为参数),直线l2的参数方程为$\left\{\begin{array}{l}{x=-2+m}\\{y=\frac{m}{k}}\end{array}\right.$,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-$\sqrt{2}$=0,M为l3与C的交点,求M的极径.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=x-1-alnx.
(1)若 f(x)≥0,求a的值;
(2)设m为整数,且对于任意正整数n,(1+$\frac{1}{2}$)(1+$\frac{1}{{2}^{2}}$)…(1+$\frac{1}{{2}^{n}}$)<m,求m的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,-2),求直线l与圆M的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD. 
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)
天数216362574
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?

查看答案和解析>>

科目: 来源: 题型:解答题

9.△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+$\sqrt{3}$cosA=0,a=2$\sqrt{7}$,b=2.
(1)求c;
(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

8.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最小值为60°;
其中正确的是②③.(填写所有正确结论的编号)

查看答案和解析>>

同步练习册答案