相关习题
 0  239662  239670  239676  239680  239686  239688  239692  239698  239700  239706  239712  239716  239718  239722  239728  239730  239736  239740  239742  239746  239748  239752  239754  239756  239757  239758  239760  239761  239762  239764  239766  239770  239772  239776  239778  239782  239788  239790  239796  239800  239802  239806  239812  239818  239820  239826  239830  239832  239838  239842  239848  239856  266669 

科目: 来源: 题型:解答题

6.已知点$A(\sqrt{3},0)$,点P是圆${(x+\sqrt{3})^2}+{y^2}=16$上的任意一点,设Q为该圆的圆心,并且线段PA的垂直平分线与直线PQ交于点E.
(1)求点E的轨迹方程;
(2)已知M,N两点的坐标分别为(-2,0),(2,0),点T是直线x=4上的一个动点,且直线TM,TN分别交(1)中点E的轨迹于C,D两点(M,N,C,D四点互不相同),证明:直线CD恒过一定点,并求出该定点坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知曲线C的极坐标方程为ρ-4cosθ+3ρsin2θ=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l过点M(1,0),倾斜角为$\frac{π}{6}$.
(Ⅰ)求曲线C的直角坐标方程与直线l的参数方程;
(Ⅱ)若曲线C经过伸缩变换$\left\{\begin{array}{l}{x′=x}\\{y′=2y}\end{array}\right.$后得到曲线C′,且直线l与曲线C′交于A,B两点,求|MA|+|MB|.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知圆E:(x+$\sqrt{3}$)2+y2=16,点F($\sqrt{3}$,0),P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q.(Ⅰ)求动点Q的轨迹Γ的方程;
(Ⅱ)直线l过点(1,1),且与轨迹Γ交于A,B两点,点M满足$\overrightarrow{AM}$=$\overrightarrow{MB}$,点O为坐标原点,延长线段OM与轨迹Γ交于点R,四边形OARB能否为平行四边形?若能,求出此时直线l的方程,若不能,说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

3.如图,网格纸上小正方形的边长为a,粗实线画出的是某多面体的三视图,此几何体的表面积为$12+4(\sqrt{2}+\sqrt{5})$,则实数a=(  )
A.1B.2C.$\sqrt{2}$D.3

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知函数y=2sin(ωx+φ)(ω>0),若存在x0∈R,使得f(x0+2)-f(x0)=4,则ω的最小值为$\frac{π}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

1.在△ABC中,角A,B,C所对的边分别为a,b,c,若A=$\frac{π}{3}$,B=$\frac{π}{4}$且a=$\sqrt{3}$,则b=$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知在△ABC中,b2+a2-c2<0,且b>a,sinA+$\sqrt{2}$cosA=$\frac{5}{3}$,则tanA=(  )
A.$\frac{2\sqrt{2}}{3}$或$\frac{4\sqrt{2}}{9}$B.$\frac{\sqrt{2}}{4}$C.$\frac{7\sqrt{2}}{8}$D.$\frac{\sqrt{2}}{4}$或$\frac{7\sqrt{2}}{8}$

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知集合A={x|$\frac{3x-4}{2-x}$≥0},B={x|x2-2x<0},则A∩B=(  )
A.[$\frac{4}{3}$,2)B.[$\frac{3}{4}$,2]C.($\frac{3}{4}$,2)D.(-$∞,\frac{3}{4}$)∪(2,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知直线l:x-y+3=0被圆C:(x-a)2+(y-2)2=4(a>0)截得的弦长为$2\sqrt{2}$,求
(1)a的值;
(2)求过点(3,5)并与圆C相切的切线方程.

查看答案和解析>>

科目: 来源: 题型:解答题

17.某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,在学习积极性高的25名学生中有7名不太主动参加班级工作,而在积极参加班级工作的24名学生中有6名学生学习积极性一般.
(1)填写下面列联表;
积极参加班级工作不太主动参加班级工作合计
学习积极性高
学习积极性一般
合计
(2)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(3)试运用独立性检验的思想方法分析:能否在犯错误概率不超过0.001的前提下认为学生的学习积极性与对待班级工作的态度有关系.
(观测值表如下)
P(K2≥k00.0250.0100.0050.001
k05.0246.6357.87910.828

查看答案和解析>>

同步练习册答案