相关习题
 0  239682  239690  239696  239700  239706  239708  239712  239718  239720  239726  239732  239736  239738  239742  239748  239750  239756  239760  239762  239766  239768  239772  239774  239776  239777  239778  239780  239781  239782  239784  239786  239790  239792  239796  239798  239802  239808  239810  239816  239820  239822  239826  239832  239838  239840  239846  239850  239852  239858  239862  239868  239876  266669 

科目: 来源: 题型:解答题

6.设函数f(x)=x2-alnx-(a-2)x
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)有两个零点x1,x2,求满足条件的最小正整数a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.2017年两会继续关注了乡村教师的问题,随着城乡发展失衡,乡村教师待遇得不到保障,流失现象严重,教师短缺会严重影响乡村孩子的教育问题,为此,某市今年要为某所乡村中学招聘储备未来三年的教师,现在每招聘一名教师需要2万元,若三年后教师严重短缺时再招聘,由于各种因素,则每招聘一名教师需要5万元,已知现在该乡村中学无多余教师,为决策应招聘多少乡村教师搜集并整理了该市100所乡村中学在过去三年内的教师流失数,得到右面的柱状图:记x表示一所乡村中学在过去三年内流失的教师数,y表示一所乡村中学未来四年内在招聘教师上所需的费用(单位:万元),n表示今年为该乡村中学招聘的教师数,为保障乡村孩子教育不受影响,若未来三年内教师有短缺,则第四年马上招聘
(Ⅰ)若n=19,求y与x的函数解析式;
(Ⅱ)若要求“流失的教师数不大于n”的频率不小于0.5,求n的最小值;
(Ⅲ)假设今年该市为这100所乡村中学的每一所都招聘了19个教师或20个教师,分别计算该市未来四年内为这100所乡村中学招聘教师所需费用的平均数,以此作为决策依据,今年该乡村中学应招聘19名还是20名教师?

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图所示,三棱柱ABC-A1B1C1的底面是边长为2正三角形,D是A1C1的中点,且AA1⊥平面ABC,AA1=3.
(Ⅰ)求证:A1B∥平面B1DC;
(Ⅱ)求二面角D-B1C-C1的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知甲,乙两辆车去同一货场装货物,货场每次只能给一辆车装货物,所以若两辆车同时到达,则需要有一车等待.已知甲、乙两车装货物需要的时间都为30分钟,倘若甲、乙两车都在某1小时内到达该货场,则至少有一辆车需要等待装货物的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=xlnx,e为自然对数的底数.
(Ⅰ)求曲线y=f(x)在x=e-3处的切线方程;
(Ⅱ)关于x的不等式f(x)≥λ(x-1)在(0,+∞)恒成立,求实数λ的取值范围.
(Ⅲ)关于x的方程f(x)=a有两个实根x1,x2,求证:|x1-x2|<$\frac{3}{2}$a+1+$\frac{1}{2{e}^{3}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在直角梯形ABCD中AD∥BC.∠ABC=90°,AB=BC=2,DE=4,CE⊥AD于E,把△DEC沿CE折到D′EC的位置,使D′A=2$\sqrt{3}$.
(Ⅰ)求证:BE⊥平面AD′C;
(Ⅱ)求平面D′AB与平面D′CE的所夹的锐二面角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=2$\sqrt{3}$sin2($\frac{π}{4}$+x)+2sin($\frac{π}{4}$+x)cos($\frac{π}{4}$+x).
(Ⅰ)求函数f(x)的单调递增区间及其对称中心;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c且角A满足f(A)=$\sqrt{3}$+1,若a=3,BC边上的中线长为3,求△ABC的面积S.

查看答案和解析>>

科目: 来源: 题型:选择题

19.如果一个n位十进制数$\overline{{a}_{1}{a}_{2…}{a}_{n}}$的数位上的数字满足“小大小大…小大”的顺序,即满足:a1<a2>a3<a4>a5<a6…,我们称这种数为“波浪数”;从1,2,3,4,5组成的数字不重复的五位数中任取一个五位数$\overline{abcde}$,这个数为“波浪数”的概率是(  )
A.$\frac{1}{10}$B.$\frac{2}{15}$C.$\frac{1}{5}$D.$\frac{4}{15}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.定义$\frac{n}{{P}_{1}+{P}_{2}+…+{P}_{n}}$为n个正数P1,P2…Pn的“均倒数”,若已知正整数数列{an}的前n项的“均倒数”为$\frac{1}{2n+1}$,又bn=$\frac{{a}_{n}+1}{4}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{10}{b}_{11}}$=(  )
A.$\frac{1}{11}$B.$\frac{1}{12}$C.$\frac{10}{11}$D.$\frac{11}{12}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.设直角坐标系xoy平面内的三点A(1,-2),B(a,-1),C(-b,0).其中a>0,b>0.若A,B,C三点共线.则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.4B.6C.8D.9

查看答案和解析>>

同步练习册答案