相关习题
 0  239686  239694  239700  239704  239710  239712  239716  239722  239724  239730  239736  239740  239742  239746  239752  239754  239760  239764  239766  239770  239772  239776  239778  239780  239781  239782  239784  239785  239786  239788  239790  239794  239796  239800  239802  239806  239812  239814  239820  239824  239826  239830  239836  239842  239844  239850  239854  239856  239862  239866  239872  239880  266669 

科目: 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{3}$sin2x+sinxcosx-$\frac{\sqrt{3}}{2}$
(1)求函数y=f(x)在[0,$\frac{π}{2}$]上的单调递增区间;
(2)将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位长度,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,求证:存在无穷多个互不相同的整数x0,使得g(x0)>$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.(1-2x)5的二项展开式中各项系数的绝对值之和为243.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知数列{an}满足:a1=1,an=$\left\{\begin{array}{l}{2{a}_{\frac{n}{2}}+1,n为偶数}\\{\frac{1}{2}+2{a}_{\frac{n-1}{2}},n为奇数}\end{array}\right.$,n=2,3,4,….
(1)求a2,a3,a4,a5的值;
(2)设bn=${a}_{{2}^{n-1}}$+1,n∈N*,求证:数列{bn}是等比数列,并求出其通项公式;
(3)对任意的m≥2,m∈N*,在数列{an}中是否存在连续的2m项构成等差数列?若存在,写出这2m项,并证明这2m项构成等差数列;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

3.经市场调查,某商品每吨的价格为x(1<x<14)万元时,该商品的月供给量为y1吨,y1=ax+$\frac{7}{2}$a2-a(a>0):月需求量为y2吨,y2=-$\frac{1}{224}$x2-$\frac{1}{112}$x+1,当该商品的需求量大于供给量时,销售量等于供给量:当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.
(1)已知a=$\frac{1}{7}$,若某月该商品的价格为x=7,求商品在该月的销售额(精确到1元);
(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6万元,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知集合M={(x,y)||x|+|y|≤1},若实数对(λ,μ)满足:对任意的(x,y)∈M,都有(λx,μy)∈M,则称(λ,μ)是集合M的“嵌入实数对”.则以下集合中,不存在集合M的“嵌入实数对”的是(  )
A.{(λ,μ)|λ-μ=2}B.{(λ,μ)|λ+μ=2}C.{(λ,μ)|λ22=2}D.{(λ,μ)|λ22=2}

查看答案和解析>>

科目: 来源: 题型:选择题

1.若a满足方程xex=4,b满足方程xlnx=4,则函数f(x)=log${\;}_{\sqrt{ab}}$(x+4)-(ab)x(  )
A.仅有一个或没有零点B.有两个正零点
C.有一个正零点和一个负零点D.有两个负零点

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的上下焦点分别为F1,F2,离心率为$\frac{1}{2}$,P为C上动点,且满足$\overrightarrow{{F_2}P}=λ\overrightarrow{PQ}(λ>0),|\overrightarrow{PQ}|=|\overrightarrow{P{F_1}}$|,△QF1F2面积的最大值为4.
(Ⅰ)求Q点轨迹E的方程和椭圆C的方程;
(Ⅱ)直线y=kx+m(m>0)与椭圆C相切且与曲线E交于M,N两点,求${S_{△{F_{\;}}_1MN}}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.某校举办“中国诗词大赛”活动,某班派出甲乙两名选手同时参加比赛.大赛设有15个诗词填空题,其中“唐诗”、“宋词”和“毛泽东诗词”各5个.每位选手从三类诗词中各任选1个进行作答,3个全答对选手得3分,答对2个选手得2分,答对1个选手得1分,一个都没答对选手得0分.已知“唐诗”、“宋词”和“毛泽东诗词”中甲能答对的题目个数依次为5,4,3,乙能答对的题目个数依此为4,5,4,假设每人各题答对与否互不影响,甲乙两人答对与否也互不影响.
求:
(Ⅰ)甲乙两人同时得到3分的概率;
(Ⅱ)甲乙两人得分之和ξ的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在钝角△ABC中,角A,B,C所对的边分别为a,b,c且b=atanB.
(Ⅰ)求A-B的值;
(Ⅱ)求cos2B-sinA的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知数列{an}的前n项和${S_n}={(-1)^{n+1}}\frac{1}{2^n}$,如果存在正整数n,使得(p-an)(p-an+1)<0成立,则实数p的取值范围是(-$\frac{3}{4}$,$\frac{1}{2}$).

查看答案和解析>>

同步练习册答案