相关习题
 0  239712  239720  239726  239730  239736  239738  239742  239748  239750  239756  239762  239766  239768  239772  239778  239780  239786  239790  239792  239796  239798  239802  239804  239806  239807  239808  239810  239811  239812  239814  239816  239820  239822  239826  239828  239832  239838  239840  239846  239850  239852  239856  239862  239868  239870  239876  239880  239882  239888  239892  239898  239906  266669 

科目: 来源: 题型:填空题

19.如图,直三棱柱的主视图是边长为2的正方形,且俯视图为一个等边三角形,则该三棱柱的左视图面积为2$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{|x+a|+|x-1|,}&{x>0}\\{{x}^{2}-ax+2,}&{x≤0}\end{array}\right.$的最小值为a+1,则实数a的取值范围为{-2-2$\sqrt{2}$}∪[-1,1].

查看答案和解析>>

科目: 来源: 题型:填空题

17.设mx2-mx-1≥0的解集为∅,则实数m的取值范围是(-4,0].

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=90°,四边形ABCD是平行四边形,且PA=AD=2,AB=1,E是线段PD的中点.
( 1 ) 求证:AE⊥PC;
(2)是否存在正实数λ,满足$\overrightarrow{PM}=λ\overrightarrow{MC}$,使得二面角M-BD-C的大小为600?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知过抛物线x2=4y焦点F的直线交抛物线于A、B两点(点A在第一象限),若$\overrightarrow{AF}=3\overrightarrow{FB}$,则直线的方程为(  )
A.$\sqrt{3}x-y-\sqrt{3}=0$B.$x-\sqrt{3}y+\sqrt{3}=0$C.$x-\sqrt{3}y-1=0$D.$\sqrt{3}x-y+1=0$

查看答案和解析>>

科目: 来源: 题型:选择题

14.古有苏秦、张仪唇枪舌剑驰骋于乱世之秋,今看我一中学子论天、论地、指点江山.现在高二某班需从甲、乙、丙、丁、戊五位同学中,选出四位同学组成重庆一中“口才季”中的一个辩论队,根据他们的文化、思维水平,分别担任一辩、二辩、三辩、四辩,其中四辩必须由甲或乙担任,而丙与丁不能担任一辩,则不同组队方式有(  )
A.12种B.16种C.20种D.24种

查看答案和解析>>

科目: 来源: 题型:选择题

13.设x,y满足约束条件$\left\{\begin{array}{l}x+y-2≥0\\ x-y+1≥0\\ x≤3\end{array}\right.$,若z=mx+y的最小值为-3,则m的值为(  )
A.-9B.$-\frac{7}{3}$C.$-\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.若曲线$y=alnx+\frac{1}{2}{x^2}+2x$的切线斜率都是正数,则实数的取值范围是(  )
A.(1,+∞)B.[1,+∞)C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

11.对于函数$f(x)=sin(x+\frac{3π}{2})cos(\frac{π}{2}+x)$,给出下列四个结论:
(1)函数f(x)的最小正周期为π;    
(2)若f(x1)=-f(x2),则x1=-x2
(3)f(x)的图象关于直线$x=-\frac{π}{4}$对称;
(4)f(x)在$[{\frac{π}{4},\frac{3π}{4}}]$上是减函数.
其中正确的个数为(  )
A.2B.4C.1D.3

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知函数f(x)=Asin(ωx+φ),x∈R(其中$A>0,ω>0,0<Φ<\frac{π}{2}$)的图象与x轴的交点中,相邻的两个交点之间的距离为$\frac{π}{2}$,且图象上的一个最低点为$M(\frac{2π}{3},-2)$,则f(x)的解析式为(  )
A.$f(x)=2sin(2x+\frac{π}{6})$B.$f(x)=2cos(2x+\frac{π}{6})$C.$f(x)=sin(2x+\frac{π}{3})$D.$f(x)=cos(2x+\frac{π}{3})$

查看答案和解析>>

同步练习册答案