相关习题
 0  239720  239728  239734  239738  239744  239746  239750  239756  239758  239764  239770  239774  239776  239780  239786  239788  239794  239798  239800  239804  239806  239810  239812  239814  239815  239816  239818  239819  239820  239822  239824  239828  239830  239834  239836  239840  239846  239848  239854  239858  239860  239864  239870  239876  239878  239884  239888  239890  239896  239900  239906  239914  266669 

科目: 来源: 题型:解答题

18.已知抛物线C:y2=2px(p>0)上的点M(x0,y0)到点N(2,0)距离的最小值为$\sqrt{3}$.
(1)求抛物线C的方程;
(2)若x0>2,圆E(x-1)2+y2=1,过M作圆E的两条切线分别交y轴A(0,a),B(0,b)两点,求△MAB面积的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在四棱台ABCD-A1B1C1D1中,底面ABCD为平行四边形,∠BAD=120°,M为CD上的点.且∠A1AB=∠A1AD=90°,AD=A1A=2,A1B1=DM=1.
(1)求证:AM⊥A1B;
(2)若M为CD的中点,N为棱DD1上的点,且MN与平面A1BD所成角的正弦值为$\frac{1}{{\sqrt{35}}}$,试求DN的长.

查看答案和解析>>

科目: 来源: 题型:解答题

16.随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查50人,并将调查情况进行整理后制成如表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,60)
频数1010101010
赞成人数35679
(1)世界联合国卫生组织规定:[15,45)岁为青年,(45,60)为中年,根据以上统计数据填写以下2×2列联表:
青年人中年人合计
不赞成16420
赞成141630
合计302050
(2)判断能否在犯错误的概率不超过0.05的前提下,认为赞成“车柄限行”与年龄有关?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d
独立检验临界值表:
P(K2≥k)0.1000.0500.0250.010
k02.7063.8415.0246.635
(3)若从年龄[15,25),[25,35)的被调查中各随机选取1人进行调查,设选中的两人中持不赞成“车辆限行”态度的人员为ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知数列{an}的前n项和为Sn,Sn=2an-1,{bn}是等差数列,且b1=a1,b4=a3
(1)求数列{an}和{bn}的通项公式;
(2)若${c_n}=\frac{2}{a_n}-\frac{1}{{{b_n}{b_{n+1}}}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

14.${({xy-\frac{1}{x}})^8}$的二项式中不含x的项的系数为70.

查看答案和解析>>

科目: 来源: 题型:选择题

13.若对?x∈[0,+∞),y∈[0,+∞),不等式ex+y-2+ex-y-2+2-4ax≥0恒成立,则实数a取值范围是(  )
A.$({-∞,\frac{1}{4}}]$B.$[{\frac{1}{4},+∞})$C.$[{\frac{1}{2},+∞})$D.$({-∞,\frac{1}{2}}]$

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知M为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$右支上一点,A,F分别为双曲线C左顶点和的右焦点,MF=AF,若∠MFA=60°,则双曲线C的离心率为(  )
A.2B.3C.4D.6

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知数列{an}的各项都是正数,a1=1,an+12=an2+$\frac{{a}_{n}}{{n}^{2}}$(n∈N*
(1)求证:$\sqrt{2+\frac{\sqrt{2}(n-2)}{2n}}$≤an<2(n≥2)
(2)求证:12(a2-a1)+22(a3-a2)+…+n2(an+1-an)>$\frac{n}{2}$-$\frac{1}{4}$(n∈N*

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,P(x0,y0)是椭圆$\frac{{x}^{2}}{3}$+y2=1的上的点,l是椭圆在点P处的切线,O是坐标原点,OQ∥l与椭圆的一个交点是Q,P,Q都在x轴上方
(1)当P点坐标为($\frac{3}{2}$,$\frac{1}{2}$)时,利用题后定理写出l的方程,并验证l确定是椭圆的切线;
(2)当点P在第一象限运动时(可以直接应用定理)
①求△OPQ的面积
②求直线PQ在y轴上的截距的取值范围.
定理:若点(x0,y0)在椭圆$\frac{{x}^{2}}{3}$+y2=1上,则椭圆在该点处的切线方程为$\frac{{x}_{0}x}{3}$+y0y=1.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=xex-a(x-1)(a∈R)
(1)若函数f(x)在x=0处有极值,求a的值及f(x)的单调区间
(2)若存在实数x0∈(0,$\frac{1}{2}$),使得f(x0)<0,求实数a的取值范围.

查看答案和解析>>

同步练习册答案