相关习题
 0  239733  239741  239747  239751  239757  239759  239763  239769  239771  239777  239783  239787  239789  239793  239799  239801  239807  239811  239813  239817  239819  239823  239825  239827  239828  239829  239831  239832  239833  239835  239837  239841  239843  239847  239849  239853  239859  239861  239867  239871  239873  239877  239883  239889  239891  239897  239901  239903  239909  239913  239919  239927  266669 

科目: 来源: 题型:选择题

8.已知数列{an}满足:a1为正整数,an+1=$\left\{{\begin{array}{l}{\frac{a_n}{2},\;{a_n}为偶数}\\{3{a_n}+1,{a_n}为奇数}\end{array}}$,如果a1=5,则a1+a2+a3的值为(  )
A.29B.30C.31D.32

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知m∈R,复数z=$\frac{m(m-2)}{m-1}$+(m2+2m-3)i,求分别满足下列条件的m的值.
(1)z∈R;               
(2)z是纯虚数.

查看答案和解析>>

科目: 来源: 题型:填空题

6.设z=$\frac{1}{1+i}$+i(i为虚数单位),则|z|=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.函数f(x)=lnx-2x的单调递增区间为(  )
A.(-∞,2)B.$(-∞,\frac{1}{2})$C.$(0,\frac{1}{2})$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

科目: 来源: 题型:解答题

4.证明不等式:ex>1+x(x≠0).

查看答案和解析>>

科目: 来源: 题型:解答题

3.2016年上半年数据显示,某市空气质量在其所在省中排名倒数第三,PM10(可吸入颗粒物)和PM2.5(细颗粒物)分别排在倒数第一和倒数第四,这引起有关部门高度重视,该市采取一系列“组合拳”治理大气污染,计划到2016年底,全年优、良天数达到190天.下表是2016年9月1日到9月15日该市的空气质量指数(AQI),其中空气质量指数划分为0~50,51~100,101~150,151~200,201~300和大于300六档,对应空气质量依次为优、良、轻度污染、中度污染、重度污染、严重污染.
日期1日2日3日4日5日6日7日8日9日10日11日12日13日14日15日
AQI指数7274115192138123748010573919077109124
PM2.53629761128985403259354559537989
PM107686148199158147708312175969063113140
(1)指出这15天中PM2.5的最大值及PM10的最大值;
(2)从这15天中连续取2天,求这2天空气质量均为优、良的概率;
(3)已知2016年前8个月(每个月按30天计算)该市空气质量为优、良的天数约占55%,用9月份这15天空气质量优、良的频率作为2016年后4个月空气质量优、良的概率(不考虑其他因素),估计该市到2016年底,能否完成全年优、良天数达到190天的目标.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知函数f(x)=$\frac{ax}{x-1}$,若f(x)+f($\frac{1}{x}$)=3,则f(x)+f(2-x)=6.

查看答案和解析>>

科目: 来源: 题型:选择题

1.若$\frac{2+ai}{1+i}$=x+yi(a,x,y均为实数),则x-y=(  )
A.0B.1C.2D.a

查看答案和解析>>

科目: 来源: 题型:解答题

20.某互联网理财平台为增加平台活跃度决定举行邀请好友拿奖励活动,规则是每邀请一位好友在该平台注册,并购买至少1万元的12月定期,邀请人可获得现金及红包奖励,现金奖励为被邀请人理财金额的1%,且每邀请一位最高现金奖励为300元,红包奖励为每邀请一位奖励50元.假设甲邀请到乙、丙两人,且乙、丙两人同意在该平台注册,并进行理财,乙、丙两人分别购买1万元、2万元、3万元的12月定期的概率如表:
理财金额1万元2万元3万元
乙理财相应金额的概率$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$
丙理财相应金额的概率$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{6}$
(1)求乙、丙理财金额之和不少于5万元的概率;
(2)若甲获得奖励为X元,求X的分布列与数学期望.

查看答案和解析>>

科目: 来源: 题型:选择题

19.狄利克雷函数是高等数学中的一个典型函数,若f(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{0,x∈{C}_{R}Q}\end{array}\right.$,则称f(x)为狄利克雷函数.对于狄利克雷函数f(x),给出下面4个命题:①对任意x∈R,都有f[f(x)]=1;②对任意x∈R,都有f(-x)+f(x)=0;③对任意x1∈R,都有x2∈Q,f(x1+x2 )=f(x1);④对任意a,b∈(-∞,0),都有{x|f(x)>a}={x|f(x)>b}.其中所有真命题的序号是(  )
A.①④B.③④C.①②③D.①③④

查看答案和解析>>

同步练习册答案