相关习题
 0  239740  239748  239754  239758  239764  239766  239770  239776  239778  239784  239790  239794  239796  239800  239806  239808  239814  239818  239820  239824  239826  239830  239832  239834  239835  239836  239838  239839  239840  239842  239844  239848  239850  239854  239856  239860  239866  239868  239874  239878  239880  239884  239890  239896  239898  239904  239908  239910  239916  239920  239926  239934  266669 

科目: 来源: 题型:填空题

18.由直线y=x-3上的点向圆(x+2)2+(y-3)2=1引切线,则切线长的最小值为$\sqrt{31}$.

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知一组数据为8,12,10,11,9.则这组数据方差为2.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=sin(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求f($\frac{π}{8}$)的值;
(2)函数h(x)=af$(\frac{x}{2})-{sin^2}$x,x∈[$\frac{π}{6},\frac{2π}{3}$],有最小值为-1,求a的值和函数h(x)的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象,M,N是它与x轴的两个交点,D,C分别为它的最高点和最低点,点F(0,1)是线段MD的中点,三角形MDC的面积为$\frac{2π}{3}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x)-m>0在$x∈[{-\frac{π}{36},\frac{π}{36}}]$上恒成立,求m的取值范围;
(Ⅲ)将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再往上平移1个单位,得到函数y=g(x)的图象.求y=g(x)在区间[2009π,2017π]上的零点个数.

查看答案和解析>>

科目: 来源: 题型:填空题

14.用“五点法”画y=2sin(2x+$\frac{π}{3}$)在一个周期内的简图时,所描的五个点分别是($-\frac{π}{6}$,0),($\frac{π}{12}$,2),($\frac{π}{3}$,0),($\frac{7π}{12}$,-2),($\frac{5π}{6}$,0).

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知定义域为R的函数f(x)既是奇函数,又是周期为3的周期函数,当x∈(0,$\frac{3}{2}$)时,f(x)=sinπx,f($\frac{3}{2}$)=0,则函数f(x)在区间[0,6]上的零点个数是(  )
A.3B.5C.7D.9

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知两点M(-1,0),N(1,0),若直线y=k(x-2)上至少存在三个点P,使得△MNP是直角三角形,则实数k的取值范围是(  )
A.$[-\frac{{\sqrt{3}}}{3}\;\;,\;\frac{{\sqrt{3}}}{3}]$B.$[-\frac{1}{3}\;,\;\frac{1}{3}]$C.$[-\frac{1}{3}\;,\;0)∪(0\;,\;\frac{1}{3}]$D.$[-\frac{{\sqrt{3}}}{3}\;,\;0)∪(0\;,\;\frac{{\sqrt{3}}}{3}]$

查看答案和解析>>

科目: 来源: 题型:选择题

11.下列说法正确的是(  )
A.若|$\vec a|>|\vec b|$,$\vec a>\vec b$B.若$|\vec a|=|\vec b|$,$\vec a=\vec b$
C.若$\vec a=\vec b$,则$\vec a∥\vec b$D.若$\vec a≠\vec b$,则$\vec a$与$\vec b$不是共线向量

查看答案和解析>>

科目: 来源: 题型:选择题

10.在△ABC中,AB=3,AC=2,∠BAC=60°,点P是△ABC内一点(含边界),若$\overrightarrow{AP}=\frac{2}{3}\overrightarrow{AB}+λ\overrightarrow{AC}$,则|$\overrightarrow{AP}$|的最大值为(  )
A.$\frac{2\sqrt{7}}{3}$B.$\frac{8}{3}$C.$\frac{2\sqrt{19}}{3}$D.$\frac{2\sqrt{13}}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

9.设等差数列{an}的前n项和为Sn,若a4,a6是方程x2-18x+p=0的两根,那么S9=(  )
A.9B.81C.5D.45

查看答案和解析>>

同步练习册答案