相关习题
 0  239759  239767  239773  239777  239783  239785  239789  239795  239797  239803  239809  239813  239815  239819  239825  239827  239833  239837  239839  239843  239845  239849  239851  239853  239854  239855  239857  239858  239859  239861  239863  239867  239869  239873  239875  239879  239885  239887  239893  239897  239899  239903  239909  239915  239917  239923  239927  239929  239935  239939  239945  239953  266669 

科目: 来源: 题型:填空题

4.用1,2,3,4,5这五个数字组成各位上数字不同的四位数,其中千位上是奇数,且相邻两位上的数之差的绝对值都不小于2(比如1524)的概率=$\frac{1}{12}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知实数x,y满足x2+y2-6x+8y-11=0,则$\sqrt{{x}^{2}+{y}^{2}}$的最大值=11,|3x+4y-28|的最小值=5.

查看答案和解析>>

科目: 来源: 题型:填空题

2.某几何体的三视图如图所示,则该几何体最长的一条棱的长度=2$\sqrt{2}$,体积为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

1.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左,右焦点分别是F1,F2,点P在双曲线上,且满足∠PF2F1=2∠PF1F2=60°,则此双曲线的离心率等于(  )
A.2$\sqrt{3}$-2B.$\frac{\sqrt{3}+1}{2}$C.$\sqrt{3}$+1D.2$\sqrt{3}$+2

查看答案和解析>>

科目: 来源: 题型:解答题

20.在△ABC中,角A,B,C的对边分别为a,b,c,已知$\frac{a}{c}$cosB+$\frac{b}{c}$cosA=$\frac{\sqrt{3}}{2cosC}$
( I)求∠C的大小;
( II)求sinB-$\sqrt{3}$sinA的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

19.若曲线C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=1+2sinθ\end{array}\right.$(参数$θ∈[{-\frac{π}{2},\frac{π}{2}}]$),则曲线C(  )
A.表示直线B.表示线段C.表示圆D.表示半个圆

查看答案和解析>>

科目: 来源: 题型:填空题

18.在极坐标系中,射线θ=$\frac{π}{4}$被圆ρ=4sinθ截得的弦长为2$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

17.如果执行下面的框图,当m=7,n=3时,输出的S值为(  ) 
A.7B.42C.210D.840

查看答案和解析>>

科目: 来源: 题型:选择题

16.20世纪70年代,流行一种游戏---角谷猜想,规则如下:任意写出一个自然数n,按照以下的规律进行变换:如果n是个奇数,则下一步变成3n+1;如果n是个偶数,则下一步变成$\frac{n}{2}$,这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确的说是落入底部的4-2-1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设计的,如果输出的i值为6,则输入的n值为(  )
A.5B.16C.5或32D.4或5或32

查看答案和解析>>

科目: 来源: 题型:选择题

15.《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九昭的许多创造性成就,其中在卷五“三斜求职”中提出了已知三角形三边a,b,c求面积的公式,这与古希腊的海伦公式完成等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即S=$\sqrt{\frac{1}{4}[{c^2}{a^2}-{{(\frac{{{c^2}+{a^2}-{b^2}}}{2})}^2}]}$,现有周长为10+2$\sqrt{7}$的△ABC满足sinA:sinB:sinC=2:3:$\sqrt{7}$,则用以上给出的公式求得△ABC的面积为(  )
A.$6\sqrt{3}$B.$4\sqrt{7}$C.$8\sqrt{7}$D.12

查看答案和解析>>

同步练习册答案