相关习题
 0  239769  239777  239783  239787  239793  239795  239799  239805  239807  239813  239819  239823  239825  239829  239835  239837  239843  239847  239849  239853  239855  239859  239861  239863  239864  239865  239867  239868  239869  239871  239873  239877  239879  239883  239885  239889  239895  239897  239903  239907  239909  239913  239919  239925  239927  239933  239937  239939  239945  239949  239955  239963  266669 

科目: 来源: 题型:选择题

4.运行如下程序框图,如果输入的t∈[0,5],则输出S属于(  )
A.[-4,10)B.[-5,2]C.[-4,3]D.[-2,5]

查看答案和解析>>

科目: 来源: 题型:选择题

3.70年代中期,美国各所名牌大学校园内,人们都像发疯一般,夜以继日,废寝忘食地玩一个数学游戏.这个游戏十分简单:任意写出一个自然数N,并且按照以下的规律进行变换:如果是个奇数,则下一步变成3N+1;如果是个偶数,则下一步变成$\frac{N}{2}$.不单单是学生,甚至连教师、研究员、教授与学究都纷纷加入.为什么这个游戏的魅力经久不衰?因为人们发现,无论N是怎样一个数字,最终都无法逃脱回到谷底1.准确地说,是无法逃出落入底部的4-2-1循环,永远也逃不出这样的宿命.这就是著名的“冰雹猜想”.按照这种运算,自然数27经过十步运算得到的数为(  )
A.142B.71C.214D.107

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=|x-2|-|x+1|.
(Ⅰ)解不等式f(x)+x>0;
(Ⅱ)若关于x的不等式f(x)≤a2-2a在R上的解集为R,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

1.在矩形ABCD中,对角线AC,BD相交于点O,E为BO的中点,若$\overrightarrow{AE}=λ\overrightarrow{AB}+μ\overrightarrow{AD}$(λ,μ为实数),则λμ=$\frac{3}{16}$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.运行如图程序框图,分别输入t=1,5,则输出S的和为(  )
A.10B.5C.0D.-5

查看答案和解析>>

科目: 来源: 题型:解答题

19.如图,椭圆E的左右顶点分别为A、B,左右焦点分别为F1、F2,$|{AB}|=4,|{{F_1}{F_2}}|=2\sqrt{3}$,
(1)求椭圆E的标准方程;
(2)直线y=kx+m(k>0)交椭圆于C、D两点,与线段F1F2及椭圆短轴分别交于M、N两点(M、N不重合),且|CN|=|DM|.求k的值;
(3)在(2)的条件下,若m>0,设直线AD、BC的斜率分别为k1、k2,求$\frac{{{k_1}^2}}{{{k_2}^2}}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

18.如图是把二进制数11111(2)化为十进制数的一个程序框图,则输出的S=(  )
 
A.15B.30C.31D.63

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A(-2,0),离心率为$\frac{\sqrt{2}}{2}$,过A作斜率为k(k≠0)的直线l交椭圆C于点D,交y轴为E,过点O作直线l的平行线交椭圆于点G,设△AOD,△AOE,△DOG的面积分别为S1、S2、S3
(1)求椭圆C的方程;
(2)若S1+S2=3S3,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

16.某几何体的三视图如图所示(单位:cm),则该几何体的体积V=6cm3,表面积S=16+2$\sqrt{5}$cm2

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知椭圆C1:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{p}^{2}}$=1(m>p>0)与双曲线C2:$\frac{{x}^{2}}{{n}^{2}}$-$\frac{{y}^{2}}{{p}^{2}}$=1(n>0)有公共的焦点F1,F2,设M为C1与C2在第一象限内的交点,|F1F2|=2c.则(  )
A.m2+n2=2c2,且∠F1MF2>$\frac{π}{2}$B.m2+n2=2c2,且∠F1MF2=$\frac{π}{2}$
C.m2+n2=4c2,且∠F1MF2>$\frac{π}{2}$D.m2+n2=4c2,且∠F1MF2=$\frac{π}{2}$

查看答案和解析>>

同步练习册答案