相关习题
 0  239771  239779  239785  239789  239795  239797  239801  239807  239809  239815  239821  239825  239827  239831  239837  239839  239845  239849  239851  239855  239857  239861  239863  239865  239866  239867  239869  239870  239871  239873  239875  239879  239881  239885  239887  239891  239897  239899  239905  239909  239911  239915  239921  239927  239929  239935  239939  239941  239947  239951  239957  239965  266669 

科目: 来源: 题型:选择题

4.如果满足不等式$|{x-\frac{5}{4}}|<b({b>0})$的一切实数x也满足不等式|x-1|<$\frac{1}{2}$,则b的取值范围是(  )
A.$({0,\frac{3}{4}})$B.$({0,\frac{1}{4}}]$C.$[{\frac{1}{4},\frac{3}{4}}]$D.$[{\frac{3}{4},+∞})$

查看答案和解析>>

科目: 来源: 题型:选择题

3.将曲线的参数方程$\left\{\begin{array}{l}x=4\sqrt{t}+\frac{1}{{\sqrt{t}}}\\ y=4\sqrt{t}-\frac{1}{{\sqrt{t}}}\end{array}\right.(t$为参数)化为普通方程为(  )
A.x2+y2=16B.x2+y2=16(x≥4)C.x2-y2=16D.x2-y2=16(x≥4)

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知曲线$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$,θ∈[0,2π)上一点P(x,y)到定点M(a,0),(a>0)的最小距离为$\frac{3}{4}$,则a=$\frac{11}{4}$或$\frac{\sqrt{21}}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,由半圆x2+y2=r2(y≤0,r>0)和部分抛物线y=a(x2-1)(y≥0,a>0)合成的曲线C称为“羽毛球形线”,曲线C与x轴有A、B两个焦点,且经过点(2.3).
(1)求a、r的值;
(2)设N(0,2),M为曲线C上的动点,求|MN|的最小值;
(3)过A且斜率为k的直线l与“羽毛球形线”相交于P,A,Q三点,问是否存在实数k,使得∠QBA=∠PBA?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

20.方程log2(4x-3)=x+1的解集为{log23}.

查看答案和解析>>

科目: 来源: 题型:选择题

19.函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0,|φ|≤$\frac{π}{2}$)的部分图象如图所示,则y=f(x)在x∈[-$\frac{π}{4}$,$\frac{π}{2}$]上的取值范围是(  )
A.[-$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]B.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]C.[-$\frac{\sqrt{6}}{2}$,$\sqrt{2}$]D.[$\frac{\sqrt{6}}{2}$,$\sqrt{2}$]

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=|2x-a|-|x|,a∈R
(1)当a=2时,解关于的不等式f(x)>1;
(2)若f(x)≥4-|2x+a|-|x|对?x∈R恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

17.甲、乙两人轮流投篮,每次投篮甲投中的概率为$\frac{1}{2}$,乙投中的概率为$\frac{1}{3}$,规定:甲先投,若甲投中,则甲继续投,否则由乙投;若乙投中,则乙继续投,否则由甲投.两人按此规则进行投篮,则第五次为甲投篮的概率为$\frac{203}{432}$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.若a2+b2=4,则直线ax+by+2=0被圆x2+y2=5所截得的弦长为4.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知$1+\frac{1}{1+2}=\frac{4}{3}$,$1+\frac{1}{1+2}+\frac{1}{1+2+3}=\frac{3}{2}$,$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}=\frac{8}{5}$,…,若$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+…+\frac{1}{1+2+3+…+n}=\frac{12}{7}$,则n=(  )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案