相关习题
 0  239803  239811  239817  239821  239827  239829  239833  239839  239841  239847  239853  239857  239859  239863  239869  239871  239877  239881  239883  239887  239889  239893  239895  239897  239898  239899  239901  239902  239903  239905  239907  239911  239913  239917  239919  239923  239929  239931  239937  239941  239943  239947  239953  239959  239961  239967  239971  239973  239979  239983  239989  239997  266669 

科目: 来源: 题型:选择题

17.在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F分别为BC,CD的中点,以A为圆心,AD为半径的半圆分别交BA及其延长线于点M,N,点P在$\widehat{MDN}$上运动(如图).若$\overrightarrow{AP}=λ\overrightarrow{AE}+μ\overrightarrow{BF}$,其中λ,μ∈R,则2λ-5μ的取值范围是(  )
A.[-2,2]B.$[{-2,2\sqrt{2}}]$C.$[{-2\sqrt{2},2}]$D.$[{-2\sqrt{2},2\sqrt{2}}]$

查看答案和解析>>

科目: 来源: 题型:解答题

16.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=m+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}\right.$ (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=$\frac{4}{1+si{n}^{2}θ}$,且直线l经过点F(-$\sqrt{2}$,0)
( I )求曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)设曲线C的内接矩形的周长为L,求L的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知a>0,函数f(x)=ln(x-1)-a(x-2),g(x)=ex+(a2-2)x
(1)求f(x)在区间[2,3]上的最小值;
(2)设h(x)=af(x+2)+g(x),当x≥0时,h(x)≥-1恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.现从某班的一次期末考试中,随机的抽取了七位同学的数学(满分150分)、物理(满分110分)成绩如表所示,数学、物理成绩分别用特征量t,y表示,
特征量1234567
t101124119106122118115
y74838775858783
(1)求y关于t的回归方程;
(2)利用(1)中的回归方程,分析数学成绩的变化对物理成绩的影响,并估计该班某学生数学成绩130分时,他的物理成绩(精确到个位).
附:回归方程$\widehaty=\widehatbt+\widehata$中斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.${\sum_{i=1}^7{({{t_i}-\overline t})}^2}=432$.

查看答案和解析>>

科目: 来源: 题型:选择题

13.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则在齐王的马获胜的条件下,齐王的上等马获胜的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.1

查看答案和解析>>

科目: 来源: 题型:选择题

12.某三棱锥的三视图如图所示,已知该三棱锥的外接球的表面积为12π,则此三棱锥的体积为(  )
A.4B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=-1-\frac{{\sqrt{3}}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为$ρ=4sin(θ-\frac{π}{6})$.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设点为P(x,y)为直线l与圆C所截得的弦上的动点,求$\sqrt{3}x+y$的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

10.执行如图所示的程序框图,若输入n=5,则输出的S值为(  )
A.$\frac{1}{20}$B.$\frac{5}{16}$C.$\frac{16}{5}$D.$\frac{3}{8}$

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=0,0≤x≤$\frac{1}{2}$≤y≤1,则|x$\overrightarrow{a}$+y$\overrightarrow{b}$+(1-x-y)$\overrightarrow{c}$|的最小值为$\frac{1}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,李先生家住H小区,他工作在C处科技园区,从家开车到公司上班路上有L1、L2两条路线,L1路线上有A1、A2、A3三个路口,各路口遇到红灯的概率均为$\frac{1}{2}$;L2路线上有B1、B2两个路口,各路口遇到红灯的概率依次为$\frac{3}{4}$,$\frac{3}{5}$.
(1)若走L2路线,求遇到红灯次数X的分布列和数学期望;
(2)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.

查看答案和解析>>

同步练习册答案