相关习题
 0  239808  239816  239822  239826  239832  239834  239838  239844  239846  239852  239858  239862  239864  239868  239874  239876  239882  239886  239888  239892  239894  239898  239900  239902  239903  239904  239906  239907  239908  239910  239912  239916  239918  239922  239924  239928  239934  239936  239942  239946  239948  239952  239958  239964  239966  239972  239976  239978  239984  239988  239994  240002  266669 

科目: 来源: 题型:解答题

7.已知α∈[0,π),在直角坐标系xOy中,直线l1的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t为参数);在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l2的极坐标方程是ρcos(θ-α)=2sin(α+$\frac{π}{6}$).
(Ⅰ)求证:l1⊥l2
(Ⅱ)设点A的极坐标为(2,$\frac{π}{3}$),P为直线l1,l2的交点,求|OP|•|AP|的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.第96届(春季)全国糖酒商品交易会于2017年3月23日至25日在四川举办.展馆附近一家川菜特色餐厅为了研究参会人数与本店所需原材料数量的关系,在交易会前查阅了最近5次交易会的参会人数x(万人)与餐厅所用原材料数量y(袋),得到如下数据:
第一次第二次第三次第四次第五次
参会人数x(万人)11981012
原材料t(袋)2823202529
(Ⅰ)请根据所给五组数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$
(Ⅱ)若该店现有原材料12袋,据悉本次交易会大约有13万人参加,为了保证原材料能够满足需要,则该店应至少再补充原材料多少袋?
(参考公式:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$))

查看答案和解析>>

科目: 来源: 题型:填空题

5.在△ABC中,∠BAC=120°,AC=4,BC=2$\sqrt{7}$,则△ABC的面积为2$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.从3名男同学和2名女同学中任选2名参加体能测试,则恰有1名男同学参加体能测试的概率为$\frac{3}{5}$.(结果用最简分数表示)

查看答案和解析>>

科目: 来源: 题型:选择题

3.在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F分别为BC,CD的中点,以A为圆心,AD为半径的圆交AB于G,点P在$\widehat{DG}$上运动(如图).若$\overrightarrow{AP}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{BF}$,其中λ,μ∈R,则6λ+μ的取值范围是(  )
A.[1,$\sqrt{2}$]B.[$\sqrt{2}$,2$\sqrt{2}$]C.[2,2$\sqrt{2}$]D.[1,2$\sqrt{2}$]

查看答案和解析>>

科目: 来源: 题型:选择题

2.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(单位:cm),则该阳马的外接球的表面积为(  )
A.100π cm2B.$\frac{500π}{3}$ cm2C.400π cm2D.$\frac{4000π}{3}$ cm2

查看答案和解析>>

科目: 来源: 题型:选择题

1.某青少年成长关爱机构为了调研所在地区青少年的年龄与身高壮况,随机抽取6岁,9岁,12岁,15岁,18岁的青少年身高数据各1000个,根据各年龄段平均身高作出如图所示的散点图和回归直线L.根据图中数据,下列对该样本描述错误的是(  )
A.据样本数据估计,该地区青少年身高与年龄成正相关
B.所抽取数据中,5000名青少年平均身高约为145cm
C.直线L的斜率的值近似等于样本中青少年平均身高每年的增量
D.从这5种年龄的青少年中各取一人的身高数据,由这5人的平均年龄和平均身高数据作出的点一定在直线L上

查看答案和解析>>

科目: 来源: 题型:解答题

20.在的内角A,B,C的对边分别是a,b,c;若a,b,c成等比数列,且c=2a,求角B的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

19.秦九韶是我国南宋时代的数学家,其代表作《数书九章》是我国13世纪数学成就的代表之一;如图是秦九韶算法的一个程序框图,则输出的S为(  )
A.a1+x0(a3+x0(a0+a2x0))的值B.a3+x0(a2+x0(a1+a0x0))的值
C.a0+x0(a1+x0(a2+a3x0))的值D.a2+x0(a0+x0(a3+a1x0))的值

查看答案和解析>>

科目: 来源: 题型:解答题

18.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1+cosα\\ y=sinα\end{array}\right.$(α为参数);在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=sinθ.
(Ⅰ)求C1的普通方程和C2的直角坐标方程;
(Ⅱ)若射线l:y=kx(x≥0)分别交C1,C2于A,B两点(A,B异于原点).当$k∈(1,\sqrt{3}]$时,求|OA|•|OB|的取值范围.

查看答案和解析>>

同步练习册答案