相关习题
 0  239809  239817  239823  239827  239833  239835  239839  239845  239847  239853  239859  239863  239865  239869  239875  239877  239883  239887  239889  239893  239895  239899  239901  239903  239904  239905  239907  239908  239909  239911  239913  239917  239919  239923  239925  239929  239935  239937  239943  239947  239949  239953  239959  239965  239967  239973  239977  239979  239985  239989  239995  240003  266669 

科目: 来源: 题型:解答题

17.在极坐标系中,直线l和圆C的极坐标方程为ρcos(θ+$\frac{π}{6}$)=a(a∈R)和ρ=4sinθ.若直线l与圆C有且只有一个公共点,求a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知矩阵A=$[\begin{array}{l}{2}&{-2}\\{0}&{1}\end{array}]$,设曲线C:(x-y)2+y2=1在矩阵A对应的变换下得到曲线C′,求C′的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=lnx+a(x2-3x+2),其中a为参数.
(1)当a=0时,求函数f(x)在x=1处的切线方程;
(2)讨论函数f(x)极值点的个数,并说明理由;
(3)若对任意x∈[1,+∞),f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

14.在区间(0,5)内任取一个实数m,则满足3<m<4的概率为$\frac{1}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

13.随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100),若该校的学生总人数为3000,则成绩不超过60分的学生人数大约为900.

查看答案和解析>>

科目: 来源: 题型:解答题

12.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=3cosα\\ y=\sqrt{3}sinα\end{array}\right.$(α为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为$ρcos(θ+\frac{π}{3})=\sqrt{3}$.
(Ⅰ)求直线l的直角坐标方程和曲线C的普通方程;
(Ⅱ)设点P为曲线C上任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第x年与年销量y(单位:万件)之间的关系如表:
x1234
y12284256
(Ⅰ)在图中画出表中数据的散点图;
(Ⅱ)根据(Ⅰ)中的散点图拟合y与x的回归模型,并用相关系数加以说明;
(Ⅲ)建立y关于x的回归方程,预测第5年的销售量约为多少?.
附注:参考数据:$\sqrt{\sum_{i=1}^4{{{({y_i}-\overline y)}^2}}}≈32.6$,$\sqrt{5}≈2.24$,$\sum_{i=1}^4{{x_i}{y_i}=418}$.
参考公式:相关系数$r=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}\sum_{i=1}^n{{{({y_i}-\overline y)}^2}}}}}$,
回归方程$\widehaty=\widehata+\widehatbx$中斜率和截距的最小二乘法估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目: 来源: 题型:填空题

10.设圆C满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x-2y=0的距离为d.当d最小时,圆C的面积为2π.

查看答案和解析>>

科目: 来源: 题型:选择题

9.若函数f(x)=2sinωx(0<ω<1)在区间$[{0,\frac{π}{3}}]$上的最大值为1,则ω=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完$\frac{2}{3}$局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为$\frac{2}{3}$,乙获胜的概率为$\frac{1}{3}$,各局比赛结果相互独立.
(Ⅰ)求甲在4局以内(含 4 局)赢得比赛的概率;
(Ⅱ)记 X 为比赛决出胜负时的总局数,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案