相关习题
 0  239841  239849  239855  239859  239865  239867  239871  239877  239879  239885  239891  239895  239897  239901  239907  239909  239915  239919  239921  239925  239927  239931  239933  239935  239936  239937  239939  239940  239941  239943  239945  239949  239951  239955  239957  239961  239967  239969  239975  239979  239981  239985  239991  239997  239999  240005  240009  240011  240017  240021  240027  240035  266669 

科目: 来源: 题型:解答题

11.已知等差数列{an}的前n项和为Sn,等比数列{bn}的各项均为正数,公比是q,且满足:a1=3,b1=1,b2+S2=12,S2=b2q.
(Ⅰ)求an与bn
(Ⅱ)设cn=3bn-λ•2${\;}^{\frac{{a}_{n}}{3}}$(λ∈R),若数列{cn}是递增数列,求λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

10.设抛物线y2=2px(p>0)的焦点为F,点A(0,-2),若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

9.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数分别是18,23.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知函数f(x)=sin(x+$\frac{π}{2}$),g(x)=cos(x+π),则下列结论中正确的是(  )
A.将f(x)的图象向左平移$\frac{π}{2}$个单位后得到g(x)的图象
B.函数y=f(x)•g(x)的最小正周期为2π
C.函数y=f(x)•g(x)的最大值为1
D.x=$\frac{π}{2}$是函数y=f(x)•g(x)图象的一条对称轴

查看答案和解析>>

科目: 来源: 题型:选择题

7.母线长为1的圆锥的侧面展开图的圆心角为$\frac{4}{3}$π,则该圆锥的体积是(  )
A.$\frac{2\sqrt{5}}{81}$πB.$\frac{4\sqrt{5}}{27}$πC.$\frac{4\sqrt{5}}{81}$πD.$\frac{\sqrt{10}}{81}$π

查看答案和解析>>

科目: 来源: 题型:选择题

6.设集合A={x|-a<x<a},其中a>0,命题p:1∈A,命题q:2∈A,若p∨q为真命题,p∧q为假命题,则a的取值范围是(  )
A.0<a<1或a>2B.0<a<1或a≥2C.1<a≤2D.1≤a≤2

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知f(x)=$\frac{x+a}{x-a}$ex
(Ⅰ)a=1时,求f(x)在点(0,f(0))处的切线方程;
(Ⅱ)a=0且x>0时,$\frac{f(x)}{lnf(x)}$+m>0恒成立,求m的取值范围;
(Ⅲ)若f(x)在(-1,1)上单调递减,求a的范围.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知数列{an}的各项均为正数,且前n项之和Sn满足6Sn=an2+3an+2,且a2、a4、a9成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列bn=2nan的前n项和为Tn,求Tn

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$=(x,y),$\overrightarrow{b}$=(1,-2),从6张大小相同,分别标有号码1,2,3,4,5,6的卡片中有放回地抽取两张,x、y分别表示第一次、第二次抽取的卡片上的号码.
(Ⅰ)求满足$\overrightarrow{a}$•$\overrightarrow{b}$=-1的概率;
(Ⅱ)求满足$\overrightarrow{a}$•$\overrightarrow{b}$>0的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

2.给出下列命题:
①在回归直线$\widehat{y}$=0.5x-85中,变量x=200时,变量$\widehat{y}$的值一定是15;
②根据2×2列联表中的数据计算得出X2=7.469,而P(X2>6.635)≈0.01,则有99%的把握认为两个事件有关;
③x、y均为正数,且x+y=1,则$\frac{1}{x}$+$\frac{9}{y}$的最小值为12;
④若向量$\overrightarrow{a}$=(x,y),向量$\overrightarrow{b}$=(-y,x),(xy≠0),则$\overrightarrow{a}$⊥$\overrightarrow{b}$.
其中正确的命题使②④(将正确的序号都填上)

查看答案和解析>>

同步练习册答案