相关习题
 0  239874  239882  239888  239892  239898  239900  239904  239910  239912  239918  239924  239928  239930  239934  239940  239942  239948  239952  239954  239958  239960  239964  239966  239968  239969  239970  239972  239973  239974  239976  239978  239982  239984  239988  239990  239994  240000  240002  240008  240012  240014  240018  240024  240030  240032  240038  240042  240044  240050  240054  240060  240068  266669 

科目: 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{3}{x^3}-\frac{1}{2}a{x^2}$+1,a≠0.
(I)当a=1时,求f(x)的单调区间;
(II)设x0>$\frac{a}{2}$,求函数g(x)=f(x)-f(x0)-(x-x0)f′(x0)在区间$(\frac{a}{2},+∞)$的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

6.△PF1F2的一个顶点P(7,12)在双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1上,另外两顶点F1、F2为该双曲线的左、右焦点,则△PF1F2的内心坐标为(1,$\frac{3}{2}$).

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知f(x)=sin$\frac{πx}{2}$,g(x)=cos$\frac{πx}{2}$则集合{x|f(x)=g(x)}等于(  )
A.{x|x=4k+$\frac{1}{2}$,k∈Z}B.{x|x=2k+$\frac{1}{2}$,k∈Z}C.{x|x=4k±$\frac{1}{2}$,k∈Z}D.{x|x=2k+1,k∈Z}

查看答案和解析>>

科目: 来源: 题型:解答题

4.在平面直角坐标系xOy中,已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=sinθ.
(Ⅰ)求曲线C1的极坐标方程及曲线C2的直角坐标方程;
(Ⅱ)已知曲线C1,C2交于O,A两点,过O点且垂直于OA的直线与曲线C1,C2交于M,N两点,求|MN|的值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=xlnx.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若关于x的不等式f(x)≤λ(x2-1)对任意x∈[1,+∞)恒成立,求实数λ的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知菱形ABCD如图(1)所示,其中∠ACD=60°,AB=2,AC与BD相交于点O,现沿AC进行翻折,使得平面ACD⊥平面ABC,取点E,连接AE,BE,CE,DE,使得线段BE再平面ABC内的投影落在线段OB上,得到的图形如图(2)所示,其中∠OBE=60°,BE=2.
(Ⅰ)证明:DE⊥AC;
(Ⅱ)求多面体ABCDE的体积.

查看答案和解析>>

科目: 来源: 题型:选择题

1.$\frac{3-2i}{1+3i}$=(  )
A.-$\frac{3}{10}$-$\frac{11}{10}$iB.-$\frac{3}{10}$+$\frac{11}{10}$iC.$\frac{3}{10}$+$\frac{11}{10}$iD.$\frac{3}{10}$-$\frac{11}{10}$i

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知集合A={x|x∈N|2≤x≤5},B={x|y=$\sqrt{3-x}$},则A∩B=(  )
A.{2}B.{2,3}C.{2,3,4}D.{4,5}

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=|3x-a|+|3x-6|,g(x)=|x-2|+1.
(Ⅰ)a=1时,解不等式f(x)≥8;
(Ⅱ)若对任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在平面直角坐标系xOy中,曲线C1的参数方程是$\left\{\begin{array}{l}{x=1+\sqrt{3}cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α为参数),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=1.
(Ⅰ)分别写出C1的极坐标方程和C2的直角坐标方程;
(Ⅱ)若射线l的极坐标方程θ=$\frac{π}{3}$(ρ≥0),且l分别交曲线C1、C2于A、B两点,求|AB|.

查看答案和解析>>

同步练习册答案