相关习题
 0  239898  239906  239912  239916  239922  239924  239928  239934  239936  239942  239948  239952  239954  239958  239964  239966  239972  239976  239978  239982  239984  239988  239990  239992  239993  239994  239996  239997  239998  240000  240002  240006  240008  240012  240014  240018  240024  240026  240032  240036  240038  240042  240048  240054  240056  240062  240066  240068  240074  240078  240084  240092  266669 

科目: 来源: 题型:解答题

5.已知函数f(x)=x3-ax,g(x)=$\frac{1}{2}$x2-lnx-$\frac{5}{2}$.
(1)若f(x)和g(x)在同一点处有相同的极值,求实数a的值;
(2)对于一切x∈(0,+∞),有不等式f(x)≥2x•g(x)-x2+5x-3恒成立,求实数a的取值范围;
(3)设G(x)=$\frac{1}{2}$x2-$\frac{5}{2}$-g(x),求证:G(x)>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$.

查看答案和解析>>

科目: 来源: 题型:选择题

4.等比数列{an}的前n项和为Sn,且4a1,2a2,a3成等差数列,若a1=1,则S10=(  )
A.512B.511C.1024D.1023

查看答案和解析>>

科目: 来源: 题型:选择题

3.如图所示茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,乙组数据的平均数为17.4,则x、y的值分别为(  )
A.7、8B.5、7C.8、5D.7、7

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的上下焦点分别为F1,F2离心率为$\frac{1}{2}$,P为C上动点,且满足$\overrightarrow{{F}_{2}P}$=λ$\overrightarrow{PQ}$(λ>0),|$\overrightarrow{PQ}$|=|$\overrightarrow{P{F}_{1}}$|,△QF1F2面积的最大值为4.
(Ⅰ)求Q点轨迹E的方程和椭圆C的方程;
(Ⅱ)直线y=kx+m(m>0)与椭圆C相切且与曲线E交于M,N两点,求|MN|的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在钝角△ABC中,角A,B,C所对的边分别为A,B,C且b=atanB.
(Ⅰ)求A-B的值;
(Ⅱ)求sinA+sinB的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

20.设函数f(x)=lnx+$\frac{k}{x}$,k∈R.
(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线与直线x-2=0垂直,求出k值.
(Ⅱ)试讨论f(x)的单调区间;
(Ⅲ)已知函数f(x)在x=e处取得极小值,不等式f(x)<$\frac{m}{x}$的解集为P,若M={x|e≤x≤3},且M∩P≠φ,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

19.在三棱锥S-ABC中,∠ACB=90°,SA⊥平面ABC,SA=2,AC=BC=1,则异面直线SB与AC所成角的余弦值是(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

18.在三棱柱ABC-A1B1C1中,AC=BC=2,∠ACB=120°,D为A1B1的中点.
(Ⅰ)证明:A1C∥平面BC1D;
(Ⅱ)若A1A=A1C,点A1在平面ABC的射影在AC上,且侧面A1ABB1的面积为$2\sqrt{3}$,求三棱锥A1-BC1D的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

17.若直线ax+2y+6=0和直线x+a(a+1)y+a2-1=0垂直,则a=0或$-\frac{3}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知两向量$\vec a$与$\vec b$满足$|{\vec a}|=4,|{\vec b}|=2$,且$({\vec a+2\vec b})•({\vec a+\vec b})=12$,则$\vec a$与$\vec b$的夹角为120°.

查看答案和解析>>

同步练习册答案