相关习题
 0  239907  239915  239921  239925  239931  239933  239937  239943  239945  239951  239957  239961  239963  239967  239973  239975  239981  239985  239987  239991  239993  239997  239999  240001  240002  240003  240005  240006  240007  240009  240011  240015  240017  240021  240023  240027  240033  240035  240041  240045  240047  240051  240057  240063  240065  240071  240075  240077  240083  240087  240093  240101  266669 

科目: 来源: 题型:解答题

15.某保险公司针对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把企业的所有岗位共分为A、B、C三类工种,从事三类工种的人数分布比例如图,根据历史数据统计出三类工种的赔付频率如下表(并以此估计赔付频率).
工种类别ABC
赔付频率$\frac{1}{1{0}^{5}}$$\frac{2}{1{0}^{5}}$$\frac{1}{1{0}^{4}}$
对于A、B、C三类工种职工每人每年保费分别为a元,a元,b元,出险后的赔偿金额分别为100万元,100万元,50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.
(Ⅰ)若保险公司要求利润的期望不低于保费的20%,试确定保费a、b所要满足的条件;
(Ⅱ)现有如下两个方案供企业选择;
方案1:企业不与保险公司合作,企业自行拿出与保险提供的等额的赔偿金额赔付给出险职工;
方案2:企业与保险公司合作,企业负责职工保费的60%,职工个人负责保费的40%,出险后赔偿金由保险公司赔付.
若企业选择方案2的支出(不包括职工支出)低于选择方案1的支出期望,求保费a、b所要满足的条件,并判断企业是否可与保险公司合作.(若企业选择方案2的支出低于选择方案1的支出期望,且与(Ⅰ)中保险公司所提条件不矛盾,则企业可与保险公司合作.)

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图所示,在三棱柱ABC-A1B1C1中,AA1B1B为正方形,BB1C1C为菱形,B1C⊥AC1
(Ⅰ)求证:平面AA1B1B⊥平面BB1C1C;
(Ⅱ)若D是CC1中点,∠ADB是二面角A-CC1-B的平面角,求直线AC1与平面ABC所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

13.规定:投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀.根据以往经验某选手投掷一次命中8环以上的概率为$\frac{4}{5}$.现采用计算机做模拟实验来估计该选手获得优秀的概率:用计算机产生0到9之间的随机整数,用0,1表示该次投掷未在 8 环以上,用2,3,4,5,6,7,8,9表示该次投掷在 8 环以上,经随机模拟试验产生了如下 20 组随机数:
907  966  191  925  271  932  812  458  569  683
031  257  393  527  556  488  730  113  537  989
据此估计,该选手投掷 1 轮,可以拿到优秀的概率为(  )
A.$\frac{4}{5}$B.$\frac{18}{20}$C.$\frac{112}{125}$D.$\frac{17}{20}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.”意思是:“现有一根金锤,头部的1尺,重4斤;尾部的1尺,重2斤;且从头到尾,每一尺的重量构成等差数列.”则下列说法错误的是(  )
A.该金锤中间一尺重3斤
B.中间三尺的重量和是头尾两尺重量和的3倍
C.该金锤的重量为15斤
D.该金锤相邻两尺的重量之差的绝对值为0.5斤

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=|2x-1|+|x+1|.
(1)求函数f(x)的值域M;
(2)若a∈M,试比较|a-1|+|a+1|,$\frac{3}{2a}$,$\frac{7}{2}-2a$的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=2mlnx-x,g(x)=$\frac{{3{e^x}-3}}{x^2}$(m∈R,e为自然对数的底数).
(1)试讨论函数f(x)的极值情况;
(2)证明:当m>1且x>0时,总有g(x)+3f'(x)>0.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长轴长为2$\sqrt{2}$,且椭圆C与圆M:(x-1)2+y2=$\frac{1}{2}$的公共弦长为$\sqrt{2}$.
(1)求椭圆C的方程.
(2)经过原点作直线l(不与坐标轴重合)交椭圆于A,B两点,AD⊥x轴于点D,点E在椭圆C上,且$({\overrightarrow{AB}-\overrightarrow{EB}})•({\overrightarrow{DB}+\overrightarrow{AD}})=0$,求证:B,D,E三点共线..

查看答案和解析>>

科目: 来源: 题型:解答题

8.2017高考特别强调了要增加对数学文化的考查,为此某校高三年级特命制了一套与数学文化有关的专题训练卷(文、理科试卷满分均为100分),并对整个高三年级的学生进行了测试.现从这些学生中随机抽取了50名学生的成绩,按照成绩为[50,60),[60,70),…,[90,100]分成了5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).
(1)求频率分布直方图中的x的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);
(2)若高三年级共有2000名学生,试估计高三学生中这次测试成绩不低于70分的人数;
(3)若在样本中,利用分层抽样的方法从成绩不低于70分的三组学生中抽取6人,再从这6人中随机抽取3人参加这次考试的考后分析会,试求[80,90),[90,100]两组中至少有1人被抽到的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,点C在以AB为直径的圆O上,PA垂直与圆O所在平面,G为△AOC的垂心.
(1)求证:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,点Q在线段PA上,且PQ=2QA,求三棱锥P-QGC的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{2}{x^2}$+mx(m>0),数列{an}的前n项和为Sn,点(n,Sn)在f(x)图象上,且f(x)的最小值为-$\frac{1}{8}$.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=$\frac{{{2^{a_n}}}}{{({2^{a_n}}-1)({2^{{a_{n+1}}}}-1)}}$,记数列{bn}的前n项和为Tn,求证:Tn<1.

查看答案和解析>>

同步练习册答案