相关习题
 0  239927  239935  239941  239945  239951  239953  239957  239963  239965  239971  239977  239981  239983  239987  239993  239995  240001  240005  240007  240011  240013  240017  240019  240021  240022  240023  240025  240026  240027  240029  240031  240035  240037  240041  240043  240047  240053  240055  240061  240065  240067  240071  240077  240083  240085  240091  240095  240097  240103  240107  240113  240121  266669 

科目: 来源: 题型:选择题

19.若(1-2x)2017=a0+a1x+…+a2017x2017(x∈R),则$\frac{a_1}{2^2}+\frac{a_2}{2^3}+…+\frac{{{a_{2017}}}}{{{2^{2018}}}}$=(  )
A.$\frac{1}{2}$B.1C.$-\frac{1}{2}$D.-1

查看答案和解析>>

科目: 来源: 题型:选择题

18.设i为虚数单位,复数z1=1-i,z2=2i-1,则复数z1•z2在复平面上对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 来源: 题型:选择题

17.在△ABC中,若$\frac{cosA}{cosB}=\frac{b}{a}=\frac{1}{2}$,$c=2\sqrt{5}$,则△ABC的面积等于(  )
A.1B.2C.$\sqrt{5}$D.4

查看答案和解析>>

科目: 来源: 题型:选择题

16.函数f(x)=ax-1-2(a>0,a≠1)的图象恒过定点A,若点A在一次函数$y=\frac{mx-1}{n}$的图象上,其中m>0,n>0,则$\frac{1}{m}+\frac{2}{n}$的最小值为(  )
A.4B.5C.6D.$3+2\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

15.在△ABC中,$A=\frac{π}{3}$,$a=\sqrt{3}$,$b=\sqrt{2}$,则C=(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{7π}{12}$D.$\frac{5π}{12}$

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知集合M={x|-1<x<3},N={x|x2+2x-3<0},则集合M∩N等于(  )
A.{x|-1<x<3}B.{x|-3<x<1}C.{x|-1<x<1}D.{x|-3<x<3}

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,已知长方形ABCD中,AB=2$\sqrt{2}$,AD=$\sqrt{2}$,M为DC的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求证:AD⊥BM;
(2)求直线DB与平面ABCM所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知定义在R上的函数f(x)满足f(-x)=f(x),且对于任意x1,x2∈[0,+∞),x1≠x2,均有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<0.若f(-$\frac{1}{3}$)=$\frac{1}{2}$,2f(log${\;}_{\frac{1}{8}}$x)<1,则x的取值范围为(  )
A.(0,2)B.$({\frac{1}{2},+∞})$C.$({0,\frac{1}{2}})∪({2,+∞})$D.$({\frac{1}{2},1})∪({1,2})$

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数$f(x)=\sqrt{3}sin2x+2{cos^2}x+1$.
(I)求函数f(x)的单调递增区间和对称中心;
(II)设△ABC内角A,B,C的对边分别为a,b,c,且$c=\sqrt{3},f(C)=3$,若向量$\overrightarrow m=(sinA,-1)$与向量$\overrightarrow n=(2,sinB)$垂直,求a,b的值.

查看答案和解析>>

科目: 来源: 题型:填空题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,若三角形的面积$S=\frac{{\sqrt{3}}}{4}({a^2}+{b^2}-{c^2})$,则角C=$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案