相关习题
 0  239943  239951  239957  239961  239967  239969  239973  239979  239981  239987  239993  239997  239999  240003  240009  240011  240017  240021  240023  240027  240029  240033  240035  240037  240038  240039  240041  240042  240043  240045  240047  240051  240053  240057  240059  240063  240069  240071  240077  240081  240083  240087  240093  240099  240101  240107  240111  240113  240119  240123  240129  240137  266669 

科目: 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点分别为A1、A2,上、下顶点分别为B2、B1,四边形A1B1A2B2的面积为4$\sqrt{3}$,且该四边形内切圆的方程为x2+y2=$\frac{12}{7}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:y=kx+m(k,m均为常数)与椭圆C相交于M,N两个不同的点(M,N异于A1,A2),若以MN为直径的圆过椭圆C的右顶点A2,试判断直线l能否过定点?若能,求出该定点坐标;若不能,也请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在公差不为0的等差数列{an}中,a22=a3+a6,且a3为a1与a11的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=an•2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:解答题

17.在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2$\sqrt{2}$,D是AA1的中点,BD与AB1交于点O,且OC⊥平面ABB1A1
(Ⅰ)证明:平面AB1C⊥平面BCD;
(Ⅱ)若G为B1C上的一点,A1G∥平面BCD,证明:G为B1C的中点.

查看答案和解析>>

科目: 来源: 题型:解答题

16.在△ABC中,角A、B、C的对边分别为a、b、c,2acosC+2ccosA=a+c.
(Ⅰ)若$\frac{sinA}{sinB}=\frac{3}{4}$,求$\frac{c}{b}$的值;
(Ⅱ)若$C=\frac{2π}{3}$,且c-a=8,求△ABC的面积S.

查看答案和解析>>

科目: 来源: 题型:解答题

15.红星超市为了了解顾客一次购买某牛奶制品的数量(单位:盒)及结算的时间(单位:分钟)等信息,随机收集了在该超市购买牛奶制品的50位顾客的相关数据,如表所示:
一次购物数量1至2盒3至5盒6至9盒10至17盒18至25盒
顾客数量(人)20141024
结算的时间(分钟/人)11.521.52
(Ⅰ)请估计这50位顾客购买牛奶制品的结算时间的平均值;并求一位顾客的结算时间小于结算时间平均值的概率;
(Ⅱ)从购买牛奶制品的数量不少于10盒的顾客中任选两人,求两位顾客的结算时间之和超过3.5分钟的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

14.若直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=16相交于A,B两点,且$\overrightarrow{CA}•\overrightarrow{CB}=0$,则实数a的值是-1.

查看答案和解析>>

科目: 来源: 题型:填空题

13.若幂函数f(x)的图象经过点A(4,2),则它在A点处的切线方程为x-4y+4=0.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知f(x)=$\left\{\begin{array}{l}{ln(1-x),x<0}\\{{x}^{2}-ax,x≥0}\end{array}\right.$,且g(x)=f(x)+$\frac{x}{2}$有三个零点,则实数a的取值范围为($\frac{1}{2}$,+∞).

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知数列{ an}的前n项和为Sn,且满足:a1=1,a2=2,Sn+1=an+2-an+1(n∈N*),则Sn=2n-1.

查看答案和解析>>

科目: 来源: 题型:填空题

10.设a=${∫}_{1}^{e}$$\frac{2}{x}$dx,则二项式${({a\sqrt{x}-\frac{1}{{\sqrt{x}}}})^6}$的展开式的常数项是-160.

查看答案和解析>>

同步练习册答案