相关习题
 0  239975  239983  239989  239993  239999  240001  240005  240011  240013  240019  240025  240029  240031  240035  240041  240043  240049  240053  240055  240059  240061  240065  240067  240069  240070  240071  240073  240074  240075  240077  240079  240083  240085  240089  240091  240095  240101  240103  240109  240113  240115  240119  240125  240131  240133  240139  240143  240145  240151  240155  240161  240169  266669 

科目: 来源: 题型:选择题

13.已知锐角α,β满足sinα=$\frac{{\sqrt{10}}}{10},cosβ=\frac{{2\sqrt{5}}}{5}$,则α+β的值为(  )
A.$\frac{3π}{4}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{3π}{4}$或$\frac{π}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.如图,在平行四边形ABCD中,AB=1,AD=2,点E,F,G,H分别是AB,BC,CD,DA边上的中点,则$\overrightarrow{EF}•\overrightarrow{FG}+\overrightarrow{GH}•\overrightarrow{HE}$=(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.设集合A={x|x2-x-2<0},集合B={x|-1<x≤1},则A∩B=(  )
A.[-1,1]B.(-1,1]C.(-1,2)D.[1,2)

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知复数z=3+4i,i为虚数单位,$\overline z$是z的共轭复数,则$\frac{i}{\overline{z}}$=(  )
A.$-\frac{4}{5}+\frac{3}{5}i$B.$-\frac{4}{5}-\frac{3}{5}i$C.$-\frac{4}{25}+\frac{3}{25}i$D.$-\frac{4}{25}-\frac{3}{25}i$

查看答案和解析>>

科目: 来源: 题型:解答题

9.(1)若x,y满足|x-3y|<$\frac{1}{2}$,|x+2y|<$\frac{1}{6}$,求证:|x|<$\frac{3}{10}$;
(2)求证:x4+16y4≥2x3y+8xy3

查看答案和解析>>

科目: 来源: 题型:解答题

8.以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=1,曲线C2的参数方程为$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=1+\frac{{\sqrt{2}}}{2}t\end{array}$(t为参数).
(1)求曲线C1上的点到曲线C2的距离的最小值;
(2)把曲线C1上的各点的横坐标扩大为原来的2倍,纵坐标扩大原来的$\sqrt{3}$倍,得到曲线C1′,设P(-1,1),曲线C2与C1′交于A,B两点,求|PA|+|PB|的值.

查看答案和解析>>

科目: 来源: 题型:选择题

7.设A,B分别是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右顶点,P是双曲线C上异于A,B的任一点,设直线AP,BP的斜率分别为m,n,则$\frac{2a}{b}$+ln|m|+ln|n|取得最小值时,双曲线C的离心率为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\sqrt{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

6.某产品的广告费用x(单位:万元)与销售额y(单位:万元)的统计数据如表:
 x 0 1 4
 y 22 35 48 75
根据表中数据求得回归直线方程为$\stackrel{∧}{y}$=9.5x+$\widehat{a}$,则$\stackrel{∧}{a}$等于(  )
A.22B.26C.33.6D.19.5

查看答案和解析>>

科目: 来源: 题型:选择题

5.在如图所示的程序框图中,若函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(-x)(x<0)}\\{{2}^{x}(x≥0)}\end{array}\right.$,则输出的结果是(  )
A.16B.8C.216D.28

查看答案和解析>>

科目: 来源: 题型:解答题

4.为了引导居民合理用水,某市决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:
阶梯级别第一阶梯水量 第二阶梯水量 第三阶梯水量 
 月用水量范围(单位:立方米)(0,10](10,15] (15,+∞)
从本市随机抽取了10户家庭,统计了同一个月的用水量,得到如图所示的茎叶图.
(1)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数的分布列和均值;
(2)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到n户月用水量为第二阶梯水量的可能性最大,求出n的值.

查看答案和解析>>

同步练习册答案