相关习题
 0  239999  240007  240013  240017  240023  240025  240029  240035  240037  240043  240049  240053  240055  240059  240065  240067  240073  240077  240079  240083  240085  240089  240091  240093  240094  240095  240097  240098  240099  240101  240103  240107  240109  240113  240115  240119  240125  240127  240133  240137  240139  240143  240149  240155  240157  240163  240167  240169  240175  240179  240185  240193  266669 

科目: 来源: 题型:选择题

15.对于函数f(x)、g(x)和区间D,如果存在x0∈D,使得|f(x0)-g(x0)|≤1,则称x0是函数f(x)与g(x)在区间D上的“互相接近点”.现给出两个函数:
①f(x)=x2,g(x)=2x-2;
②$f(x)=\sqrt{x}$,g(x)=x+2;
③f(x)=e-x+1,$g(x)=-\frac{1}{e}$;
④f(x)=lnx,g(x)=x.
则在区间(0,+∞)上存在唯一“互相接近点”的是(  )
A.①②B.③④C.②③D.①④

查看答案和解析>>

科目: 来源: 题型:解答题

14.观察如图所示的”三角数阵”
(1)记第n(n≥2)行的第2个数为an,依次写出a 2,a3,a4,a5,归纳出an+1 与an 的关系式.
(2)用累加法求该数列的通项公式an(n≥2).

查看答案和解析>>

科目: 来源: 题型:解答题

13.(1)用分析法证明:$\sqrt{6}-\sqrt{5}>2\sqrt{2}-\sqrt{7}$
(2)已知函数f(x)对其定义域的任意两个实数a,b.当a<b时,都有f(a)<f(b).用反证法证明f(x)=0至多有一个实根.

查看答案和解析>>

科目: 来源: 题型:填空题

12.已知棱长为1的正方体ABCD-A1B1C1D1中,P,Q是面对角线A1C1上的两个不同的动点(包括端点A1,C1).给出以下四个结论:
①存在P,Q两点,使BP⊥DQ;
②存在P,Q两点,使BP,DQ与直线B1C都成45°的角;
③若PQ=1,则四面体BDPQ的体积一定是定值;
④若PQ=1,则四面体BDPQ在该正方体六个面上的正投影的面积之和为定值.
以上各结论中,正确结论的是①③④.

查看答案和解析>>

科目: 来源: 题型:填空题

11.一个圆锥与一个球的体积相等,圆锥的底面半径是球半径的3倍,圆锥的高与球半径之比为$\frac{4}{9}$.

查看答案和解析>>

科目: 来源: 题型:填空题

10.复数1+$\frac{1}{i+1}$的实部为$\frac{3}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克) 清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克) 的统计表:
x12345
 y5854392910
(1)在下面的坐标系中,描出散点图,并判断变量x与y的相关性;
(2)若用解析式$\widehaty=c{x^2}+d$作为蔬菜农药残量$\widehaty$与用水量x的回归方程,令ω=x2,计算平均值$\overlineω$与$\overline y$,完成以下表格(填在答题卡中),求出$\widehaty$与x的回归方程.(c,d精确到0.1)
ω1491625
y5854392910
${ω_i}-\overlineω$-10-7-2514
${y_i}-\overline y$20161-28
(3)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请
估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据$\sqrt{5}≈2.236$)
(附:线性回归方程$\widehaty=bx+a$中系数计算公式分别为;$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-b\overline x$)

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知点P1的球坐标是(2$\sqrt{2}$,$\frac{2π}{3}$,$\frac{π}{4}$),点P2的柱坐标是(2$\sqrt{3}$,$\frac{π}{6}$,-$\sqrt{2}$),则|P1P2|=3-$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

7.若sinθ>0且cosθ<0,则θ是第二象限角,若sinθ•tanθ<0,则θ是第二、三象限角.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知函数f(x)=xecosx(e为自然对数的底数),当x∈[-π,π]时,y=f(x)的图象大致是,(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案