相关习题
 0  240009  240017  240023  240027  240033  240035  240039  240045  240047  240053  240059  240063  240065  240069  240075  240077  240083  240087  240089  240093  240095  240099  240101  240103  240104  240105  240107  240108  240109  240111  240113  240117  240119  240123  240125  240129  240135  240137  240143  240147  240149  240153  240159  240165  240167  240173  240177  240179  240185  240189  240195  240203  266669 

科目: 来源: 题型:选择题

15.为了增强环保意识,某校从男生中随机抽取60人,从女生中随机抽取50人,参加环保知识测试,统计数据如下表所示:
(参考数据:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$)
优秀非优秀总计
男生402060
女生203050
总计6050110
P(X2≥k)0.5000.1000.0500.0100.001
k0.4552.7063.8416.63510.828
则认为环保知识测试成绩是否优秀与性别有关的把握为(  )
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=lg(2-x)-lg(2+x).
(1)求函数f(x)的定义域.
(2)判断函数f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

13.近年来郑州空气污染教委严重,县随机抽取一年(365天)内100天的空气中PM2.5指数的监测数据,统计结果如表:
PM2.5[0,50](50,100](100,150](150,200](200,250](250,300]>300
空气质量轻微污染轻度污染重度污染中重度污染重度污染
天数415183071115
记某企业每天由空气污染造成的经济损失为S(单位:元),PM2.5指数为x,当x在区间[0,100]内时,对该企业没有造成经济损失;当x在区间(100,300]内时,对该企业造成的经济损失成直线模型(当PM2.5指数为150时造成的经济损失为500元,当PM2.5指数为200时,造成的经济损失为700元);当PM2.5指数大于300时,造成的经济损失为2000元
(1)试写出S(x)的表达式
(2)试估计在本年内随机抽取一天,该天的经济损失大于500元且不超过900元的概率
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有95%的把握认为郑州市本年度空气重度污染与供暖有关    附:
P(k2≥k00.250.150.100.050.0250.0100.0050.001
k01.322.072.703.8415.026.637.8710.828
k2=$\frac{n(ac-bd)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
非重度污染重度污染合计
供暖季
非供暖季
合计100

查看答案和解析>>

科目: 来源: 题型:选择题

12.设等差数列{an}满足$\frac{{{{sin}^2}{a_4}{{cos}^2}{a_7}-{{sin}^2}{a_7}{{cos}^2}{a_4}}}{{sin({a_5}+{a_6})}}=1$,公差d∈(-1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,求该数列首项a1的取值范围(  )
A.$(\frac{7π}{6},\frac{4π}{3})$B.[$\frac{7π}{6}$,$\frac{4π}{3}$]C.($\frac{4π}{3}$,$\frac{3π}{2}$)D.f(x)

查看答案和解析>>

科目: 来源: 题型:选择题

11.若实数a,b,c∈(0,1)且10a+9b=9,a+b+c=1,则当$\frac{10}{a}+\frac{1}{9b}$取最小值时,c的值为(  )
A.$\frac{5}{11}$B.$\frac{2}{11}$C.$\frac{1}{11}$D.0

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知0<a<$\frac{1}{2}$,随机变量ξ的分布列如下,则当a增大时(  )
ξ-101
Pa$\frac{1}{2}$-a$\frac{1}{2}$
A.E(ξ)增大,D(ξ)增大B.E(ξ)减小,D(ξ)增大C.E(ξ)增大,D(ξ)减小D.E(ξ)减小,D(ξ)减小

查看答案和解析>>

科目: 来源: 题型:解答题

9.20名学生某次数学成绩(单位:分)的频率分布直方图如图:
(Ⅰ)求a的值,并估计这20名学生的平均成绩;
(Ⅱ)从这20名同学中任选3人参加某项活动,求恰好有1人的成绩在[50,70)中的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

8.20名学生某次数学成绩(单位:分)的频率分布直方图如图:
(Ⅰ)求a的值,并估计这20名学生的平均成绩;
(Ⅱ)从成绩在[50,90)的学生中任选2人,求恰好有1人的成绩在[50,70)中的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

7.学习雷锋精神的前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好,单位对学习雷锋精神前后各半年内餐椅的损坏情况做了一个大致统计,具体数据如表:
损坏餐椅数未损坏餐椅数总 计
学习雷锋精神前50150200
学习雷锋精神后30170200
总  计80320400
(1)求学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学校雷锋精神是否有关?
(2)请说明是否有97.5%的把握认为损毁餐椅数量与学习雷锋精神有关?
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.0763.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目: 来源: 题型:选择题

6.求曲线y2=4x与直线y=x所围成的图形绕x轴旋转一周所得旋转体的体积(  )
A.$\frac{8}{3}$B.$\frac{32}{3}$πC.$\frac{8}{3}$πD.24π

查看答案和解析>>

同步练习册答案