相关习题
 0  240107  240115  240121  240125  240131  240133  240137  240143  240145  240151  240157  240161  240163  240167  240173  240175  240181  240185  240187  240191  240193  240197  240199  240201  240202  240203  240205  240206  240207  240209  240211  240215  240217  240221  240223  240227  240233  240235  240241  240245  240247  240251  240257  240263  240265  240271  240275  240277  240283  240287  240293  240301  266669 

科目: 来源: 题型:填空题

5.在△ABC中,若A:B:C=3:5:7,则角A,B,C的弧度数分别为$\frac{π}{5}$,$\frac{π}{3}$,$\frac{7π}{15}$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.设关于x的方程1g(ax)=21g(x-1).
(1)当a=2时,请解该方程;
(2)讨论当a取什么值时,方程有解,并求出它的解.

查看答案和解析>>

科目: 来源: 题型:填空题

3.某多面体的三视图如图所示,则该多面体的外接球的表面积为41πcm2

查看答案和解析>>

科目: 来源: 题型:解答题

2.某城市随机抽取一年内100天的空气质量指数(AQI)的监测数据,结果统计如表:
AQI[0,50](50,100](100,150](150,200](200,300]>300
空气质量轻度污染中度污染重度污染严重污染
天数61418272015
(1)若空气质量为严重污染则企业必须放假,试估计一年中(以360天计算)企业因为空气严重污染放假的天数;
(2)已知某企业每天的经济损失y(单位:元)与空气质量指数x的关系式为
y=$\left\{\begin{array}{l}{0,0≤x≤100}\\{4x-400,100<x≤300}\\{2000,x>300}\end{array}\right.$
1)若在本年内随机抽取一天,试估计这一天的经济损失超过400元的概率;
2)若以区间中点值计算空气质量指数,试估计一年中(以360天计算)企业因空气污染原因造成的经济损失是多少元.

查看答案和解析>>

科目: 来源: 题型:解答题

1.有关行列式展开:
(1)分别按第一行以及第一列展开行列式$|\begin{array}{l}{2}&{1}&{3}\\{0}&{4}&{2}\\{0}&{1}&{1}\end{array}|$;
(2)试将展开式a$|\begin{array}{l}{1}&{2}\\{0}&{4}\end{array}|$+b$|\begin{array}{l}{-1}&{3}\\{0}&{4}\end{array}|$+c$|\begin{array}{l}{-1}&{3}\\{1}&{2}\end{array}|$写成一个三阶行列式.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知对任意平面向量$\overrightarrow{AB}$=(x,y),把$\overrightarrow{AB}$绕其起点沿逆时针方向旋转θ角得到的向量$\overrightarrow{AP}$=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ得到点P.
(1)已知平面内点A(2,3),点B(2+2$\sqrt{3}$,1).把点B绕点A逆时针方向旋转$\frac{π}{6}$角得到点P,求点P的坐标.
(2)设平面内曲线C上的每一点绕坐标原点沿顺时针方向旋转$\frac{π}{4}$后得到的点的轨迹方程是曲线y=$\frac{1}{x}$,求原来曲线C的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

16.把黑、红、白3张纸牌分给甲、乙、丙三人,每人一张,则事件“甲分得黑牌”与“乙分得黑牌”是(  )
A.对立事件B.必然事件
C.不可能事件D.互斥但不对立事件

查看答案和解析>>

科目: 来源: 题型:解答题

15.设函数f(x)=|2x-1|+|2x-3|,x∈R.
(1)解不等式f(x)≤5;
(2)若f(x)+m≠0恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=1,过P作两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)若直线AB的斜率为$\sqrt{2}$,求△PAB面积的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

13.已知函数f(x)=Asin(x+$\frac{π}{4}$),且f($\frac{5}{12}$π)=$\frac{3}{2}$,则A的值为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案