相关习题
 0  240108  240116  240122  240126  240132  240134  240138  240144  240146  240152  240158  240162  240164  240168  240174  240176  240182  240186  240188  240192  240194  240198  240200  240202  240203  240204  240206  240207  240208  240210  240212  240216  240218  240222  240224  240228  240234  240236  240242  240246  240248  240252  240258  240264  240266  240272  240276  240278  240284  240288  240294  240302  266669 

科目: 来源: 题型:选择题

15.单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则(  )
A.该几何体体积为$\frac{5}{6}$B.该几何体体积可能为$\frac{2}{3}$
C.该几何体表面积应为$\frac{9}{2}+\frac{{\sqrt{3}}}{2}$D.该几何体表面积应为$\frac{7}{2}+\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

14.点N是圆(x+5)2+y2=1上的动点,以点A(4,0)为直角顶点的Rt△ABC另外两个顶点B,C在圆x2+y2=40上,且BC的中点为M,则MN的最大值为8+2$\sqrt{6}$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.设随机变量X服从[0,0.2]上的均匀分布,随机变量Y的概率密度为fY(y)=$\left\{\begin{array}{l}{5{e}^{-5y},y≥0}\\{0,其他}\end{array}\right.$,且X与Y相互独立.
求:(1)X的概率密度;
(2)(X,Y)的概率密度.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=5x2+$\frac{a}{x}$+$\frac{1}{4}$(x>0),g(x)=lnx+4,曲线y=g(x)在点(1,4)处的切线与曲线y=f(x)相切.
(1)求实数a的值;
(2)证明:当x≥0时,f(x)>g(x)

查看答案和解析>>

科目: 来源: 题型:选择题

11.若实数x、y满足x2+y2+2x+2y+1=0,则$\frac{y}{x-1}$的取值范围是(  )
A.(-∞,0]∪[$\frac{3}{4}$,+∞)B.(-∞,0]∪[$\frac{4}{3}$,+∞)C.[0,$\frac{3}{4}$]D.[0,$\frac{4}{3}$]

查看答案和解析>>

科目: 来源: 题型:解答题

10.在△ABC中,已知D为AB上一点,∠ACD=α,∠BCD=β,CD2=AD•BD,求证:sinAsinB=sinαsinβ.

查看答案和解析>>

科目: 来源: 题型:选择题

9.定义a1=(1,1),a2=(1,2),a3=(2,1),a4=(1,3),a5=(2,2),a6=(3,1),…(n∈N*),则a2017=(  )
A.(1,63)B.(63,1)C.(64,1)D.(1,64)

查看答案和解析>>

科目: 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c.且满足ccos(2016π-A)-$\sqrt{3}$ccos($\frac{3π}{2}$-A)=a+b.
(1)求C的大小;
(2)若a=3,b=4.试求$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知点A的坐标为(0,1),直线l:x=m(y+1)与直线y=-$\frac{3}{5}$交于点F,点E∈l,且?m∈R,$\overrightarrow{AE}$•$\overrightarrow{AF}$=0.
(1)求点E的轨迹C的方程;
(2)设圆T:(x+2)2+y2=r2(r>0)与轨迹C交于点M与点N,设点P是轨迹C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(sinx,1),$\overrightarrow{b}$=(1,cosx),x∈R,设f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$
(1)求函数f(x)的对称轴方程;
(2)若f(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$,θ∈(0,$\frac{π}{2}$),求f(θ-$\frac{π}{4}$)的值.

查看答案和解析>>

同步练习册答案