相关习题
 0  240109  240117  240123  240127  240133  240135  240139  240145  240147  240153  240159  240163  240165  240169  240175  240177  240183  240187  240189  240193  240195  240199  240201  240203  240204  240205  240207  240208  240209  240211  240213  240217  240219  240223  240225  240229  240235  240237  240243  240247  240249  240253  240259  240265  240267  240273  240277  240279  240285  240289  240295  240303  266669 

科目: 来源: 题型:选择题

5.已知平面内一点p∈{(x,y)|(x-2cosθ)2+(y-2sinθ) 2=16,θ∈R},则满足条件的点P在平面内所组成的图形的面积是(  )
A.B.16πC.24πD.32π

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=x3+ax2+bx(x>0)在x=3处取得极值0.
(1)求函数f(x)的解析式;
(2)已知A(x1,y1),B(x2,y2)是函数y=f(x),x∈[1,3]图象上两个不同的点,且$|{{x_1}-{x_2}}|=\sqrt{3}$,图象在A(x1,y1),B(x2,y2)两点处的切线的斜率分别为k1,k2,证明:$\sqrt{|{{k_1}{k_2}}|}≤3({1-\frac{m}{4}})$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.设直线l:(a+1)x+y+2-a=0(a∈R).
(1)求证:无论a取何值,直线必过第四象限.
(2)已知圆C:x2+y2=19,求直线l与圆C相交弦的最短弦长.

查看答案和解析>>

科目: 来源: 题型:选择题

2.若实数x,y满足x2+y2-2y=0,则$\frac{y-1}{x-2}$的取值范围为(  )
A.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$B.$[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$C.$[-\sqrt{3},\sqrt{3}]$D.$({-\sqrt{2},\sqrt{2}})$

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=ex+e-x,其中e是自然对数的底数.
(1)判断并证明f(x)的奇偶性;
(2)若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围;
(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(-x03+3x0)成立,试比较ea-1与ae-1的大小,并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=x,g(x)=lnx
(1)若函数F(x)=g(x)+af(x)有两个零点时,实数a的取值范围为A,方程$g(x)-{[{1-f(x)}]^2}+(1-f(x))=\frac{b}{x}$有实根时,实数b的取值集合为B,求A∩B.
(2)若函数G(x)=af(x)2-(a+2)f(x)+g(x),其中a∈R.,当a>0时,若f(x)在区间[1,e]上的最小值为-2,求实数a的取值范围;
(3)已知?x1,x2∈(0,+∞),且x1<x2,若G(x1)+2x1<G(x2)+2x2恒成立,求实数a的取值范围.
(4)函数$h(x)=\frac{g(x)}{f(x)}-m,(m∈R)$,若h(x)的两个零点分别为x1、x2,求证${x_1}{x_2}>{e^2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

19.2017年厦门航空公司在调查男女乘客140人是否晕机的情况中,已知男乘客60人,其中晕机为15人,女乘客80人,其中晕机为35人.
(1)根据以上的数据建立一个列联表
(2)能否在犯错误的概率不超过0.001的前提下认为晕机与性别有关
(1)给定临界值表
P(K≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.845.0246.6357.87910.83
(2)${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=$\frac{a+lnx}{x-1}$(x>1)
(1)当a=1时,求函数f(x)的单调递减区间;
(2)当a=0时,判断函数f(x)的单调性;
(3)当x>1时,证明:$\frac{lnx}{x-1}$>$\frac{ln({e}^{x}-1)}{{e}^{x}-2}$(e为自然对数的底数)

查看答案和解析>>

科目: 来源: 题型:解答题

17.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2列联表;
(2)判断是否有95%的把握认为“性别与休闲方式”有关系.
附:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(Χ2>k00.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目: 来源: 题型:填空题

16.对于事件X与Y的χ2的统计量的观测值k,下列说法不正确的是①②④.
①k越大,说明“X与Y有关”的可信度越小
②k越大,说明“X与Y无关”的可信度越大
③k越小,说明“X与Y有关”的可信度越小
④k越接近于0,说明“X与Y无关”的程度越小.

查看答案和解析>>

同步练习册答案