相关习题
 0  240134  240142  240148  240152  240158  240160  240164  240170  240172  240178  240184  240188  240190  240194  240200  240202  240208  240212  240214  240218  240220  240224  240226  240228  240229  240230  240232  240233  240234  240236  240238  240242  240244  240248  240250  240254  240260  240262  240268  240272  240274  240278  240284  240290  240292  240298  240302  240304  240310  240314  240320  240328  266669 

科目: 来源: 题型:选择题

1.当正整数集合A满足:“若x∈A,则10-x∈A”.则集合A中元素个数至多有(  )
A.7B.8C.9D.10

查看答案和解析>>

科目: 来源: 题型:解答题

20.过原点O作斜率为k1(k1≠0)的直线l交抛物线Γ:y=$\frac{1}{4}$x2-1于A,B 两点,
(1)当k1=1时,求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的值;
(2)已知M(0,3),延长AM交抛物线Γ于C点,延长BM交抛物线Γ于D点.记直线CD的斜率为k2,问是否存在实数λ,都有k2=λk1成立,如果存在,请求出λ的值;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

19.甲、乙两学校各派出3名队员,按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员进行第一局比赛,负者被淘汰,胜者再与负方2号队员进行第二局比赛,…,直到一方队员全被淘汰为止,已知甲队的1号与乙队的1、2、3号队员比赛获胜的概率分别为$\frac{3}{4}$、$\frac{2}{3}$、$\frac{1}{2}$,甲队的2号与乙队的1、2、3号队员比赛获胜的概率分别为$\frac{2}{3}$、$\frac{1}{2}$、$\frac{1}{3}$
(1)在所有的比赛过程中,甲队的1号、2号队员都只参加一局比赛的概率;
(2)在所有的比赛过程中,将甲队1号、2号队员一共参加了的比赛的局数作为随机变量ξ,求ξ的分布列与期望.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,在四棱柱ABCD-A1B1C1D1中,侧面A1ADD1⊥底面ABCD,D1A=D1D=$\sqrt{2}$,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(1)求证:A1O∥平面AB1C
(2)求直线B1C与平面C1CDD1所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在△ABC中,AB=2,cosB=$\frac{1}{3}$,点D在线段BC上.
(1)若BD=2DC,△ACD$\frac{4}{3}$$\sqrt{2}$的面积为,求边AC的长;
(2)若∠ADC=$\frac{2π}{3}$,求三角形ABD的面积S△ABD

查看答案和解析>>

科目: 来源: 题型:填空题

16.下列命题正确的是⑤
①若函数y=f(x)满足f(x-1)=f(x+1),则函数f(x)的图象关于直线x=1对称;
②在线性回归分析中,相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,且r越接近于1,该组数据的线性相关程度越大;
③在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{BC}$>0是△ABC为钝角三角形的充要条件;
④命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0<0”;
⑤由样本数据得到的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$必过样本点的中心($\overline{x}$,$\overline{y}$).

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知函数f(x)=$\sqrt{3}$sin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$),A($\frac{1}{3}$,0)为f(x)图象的对称中心,若该图象上相邻两条对称轴间的距离为2,则f(x)的单调递增区间是(  )
A.(2k-$\frac{2}{3}$,2k+$\frac{4}{3}$),k∈ZB.(2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$),k∈Z
C.(4k-$\frac{2}{3}$,4k+$\frac{4}{3}$),k∈ZD.(4kπ-$\frac{2π}{3}$,4kπ+$\frac{4π}{3}$),k∈Z

查看答案和解析>>

科目: 来源: 题型:选择题

14.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法-“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入a=6102,b=2016时,输出的a=(  )
A.6B.9C.18D.54

查看答案和解析>>

科目: 来源: 题型:选择题

13.在△ABC中,tanA=$\frac{1}{2}$,tanB=$\frac{1}{3}$,则tanC=(  )
A.-1B.1C.$\sqrt{3}$D.-2

查看答案和解析>>

科目: 来源: 题型:选择题

12.若复数z满足|z|•$\overline{z}$=20-15i,则z为(  )
A.4+3iB.4-3iC.3+4iD.3-4i

查看答案和解析>>

同步练习册答案